RedisJson 橫空出世,比 ES 快7 倍,驚爆了!
近期官網(wǎng)給出了RedisJson(RedisSearch)的性能測試報告,可謂碾壓其他NoSQL,下面是核心的報告內(nèi)容,先上結(jié)論:
對于隔離寫入(isolated writes),RedisJSON 比 MongoDB 快 5.4 倍,比 ElasticSearch 快 200 倍以上。
對于隔離讀取(isolated reads),RedisJSON 比 MongoDB 快 12.7 倍,比 ElasticSearch 快 500 倍以上。
在混合工作負(fù)載場景中,實時更新不會影響 RedisJSON 的搜索和讀取性能,而 ElasticSearch 會受到影響。
RedisJSON* 支持的操作數(shù)/秒比 MongoDB 高約 50 倍,比 ElasticSearch 高 7 倍/秒。
RedisJSON* 的延遲比 MongoDB 低約 90 倍,比 ElasticSearch 低 23.7 倍。
此外,RedisJSON 的讀取、寫入和負(fù)載搜索延遲在更高的百分位數(shù)中遠(yuǎn)比 ElasticSearch 和 MongoDB 穩(wěn)定。當(dāng)增加寫入比率時,RedisJSON 還能處理越來越高的整體吞吐量,而當(dāng)寫入比率增加時,ElasticSearch 會降低它可以處理的整體吞吐量。
MongoDB v5.0.3, ElasticSearch 7.15, and RedisJSON (RediSearch 2.2+RedisJSON 2.0).
此次是在Amazon Web Services 實例上運行基準(zhǔn)測試,這三種解決方案都是分布式數(shù)據(jù)庫,并且最常用于生產(chǎn)中的分布式方式。這就是為什么所有產(chǎn)品都使用相同的通用 m5d.8xlarge VM 和本地 SSD,并且每個設(shè)置由四個 VM 組成:一個客戶端 + 三個數(shù)據(jù)庫服務(wù)器。
基準(zhǔn)測試客戶端和數(shù)據(jù)庫服務(wù)器都在處于最佳網(wǎng)絡(luò)條件下的單獨 m5d.8xlarge 實例上運行,將實例緊密地打包在一個可用區(qū)內(nèi),實現(xiàn)穩(wěn)態(tài)分析所需的低延遲和穩(wěn)定的網(wǎng)絡(luò)性能。
測試是在三節(jié)點集群上執(zhí)行的,部署細(xì)節(jié)如下:
MongoDB 5.0.3:? 三成員副本集(Primary-Secondary-Secondary)。副本用于增加讀取容量并允許更低的延遲讀取。為了支持對字符串內(nèi)容的文本搜索查詢,在搜索字段上創(chuàng)建了一個文本索引。
ElasticSearch 7.15: ?15 個分片設(shè)置,啟用查詢緩存,并為 2 個基于 NVMe 的本地 SSD 提供 RAID 0 陣列,以實現(xiàn)更高級別的文件系統(tǒng)相關(guān)彈性操作性能。這 15 個分片為我們?yōu)?Elastic 所做的所有分片變體提供了可實現(xiàn)的最佳性能結(jié)果。
RedisJSON: RediSearch 2.2 and RedisJSON 2.0:? OSS Redis Cluster v6.2.6,有27個分片,均勻分布在三個節(jié)點上,加載了RediSearch 2.2和RedisJSON 2.0 OSS模塊。
除了這個主要的基準(zhǔn)/性能分析場景之外,我們還在網(wǎng)絡(luò)、內(nèi)存、CPU 和 I/O 上運行基準(zhǔn)基準(zhǔn)測試,以了解底層網(wǎng)絡(luò)和虛擬機特性。在整個基準(zhǔn)測試集期間,網(wǎng)絡(luò)性能保持在帶寬和 PPS 的測量限制以下,以產(chǎn)生穩(wěn)定穩(wěn)定的超低延遲網(wǎng)絡(luò)傳輸(每個數(shù)據(jù)包 p99 < 100micros)。
我們將從提供每個單獨的操作性能 [100% 寫入] 和 [100% 讀取] 開始,并以一組混合工作負(fù)載結(jié)束以模擬現(xiàn)實生活中的應(yīng)用程序場景。
如下圖所示,該基準(zhǔn)測試表明,RedisJSON* 的攝取速度比 ElasticSearch 快 8.8 倍,比 MongoDB 快 1.8 倍,同時保持每個操作的亞毫秒級延遲。值得注意的是,99% 的 Redis 請求在不到 1.5 毫秒的時間內(nèi)完成。
此外,RedisJSON* 是我們測試過的唯一一種在每次寫入時自動更新其索引的解決方案。這意味著任何后續(xù)的搜索查詢都會找到更新的文檔。ElasticSearch 沒有這種細(xì)粒度的容量;它將攝取的文檔放在一個內(nèi)部隊列中,并且該隊列由服務(wù)器(不受客戶端控制)每 N 個文檔或每 M 秒刷新一次。
他們稱這種方法為近實時 (NRT)。Apache Lucene 庫(它實現(xiàn)了 ElasticSearch 的全文功能)旨在快速搜索,但索引過程復(fù)雜且繁重。如這些 WRITE 基準(zhǔn)測試圖表所示,由于這種“設(shè)計”限制,ElasticSearch 付出了巨大的代價。
結(jié)合延遲和吞吐量改進,RedisJSON* 比 Mongodb 快 5.4 倍,比 ElasticSearch 快 200 倍以上,用于隔離寫入。


100% 讀取基準(zhǔn)
與寫類似,我們可以觀察到 Redis 在讀取方面表現(xiàn)最佳,允許讀取比 ElasticSearch 多 15.8 倍,比 MongoDB 多 2.8 倍,同時在整個延遲范圍內(nèi)保持亞毫秒級延遲,如下表所示。
在結(jié)合延遲和吞吐量改進時,RedisJSON* 比 MongoDB 快 12.7 倍,比 ElasticSearch 快 500 倍以上,用于隔離讀取。


實際應(yīng)用程序工作負(fù)載幾乎總是讀取、寫入和搜索查詢的混合。因此,在接近飽和時了解由此產(chǎn)生的混合工作負(fù)載吞吐量曲線更為重要。
作為起點,我們考慮了 65% 搜索和 35% 讀取的場景,這代表了一個常見的現(xiàn)實世界場景,在該場景中,我們執(zhí)行的搜索/查詢比直接讀取更多。65% 搜索、35% 讀取和 0% 更新的初始組合也導(dǎo)致 ElasticSearch 和 RedisJSON* 的吞吐量相等。盡管如此,YCSB 工作負(fù)載允許您指定搜索/讀取/更新之間的比率以滿足您的要求。
“搜索性能”可以指不同類型的搜索,例如“匹配查詢搜索”、“分面搜索”、“模糊搜索”等等。我們所做的最初向 YCSB 增加的搜索工作負(fù)載僅專注于“匹配查詢搜索”,模仿分頁的兩詞查詢匹配,按數(shù)字字段排序。“匹配查詢搜索”是任何啟用搜索功能的供應(yīng)商進行搜索分析的起點,因此,每個支持 YCSB 的數(shù)據(jù)庫/驅(qū)動程序都應(yīng)該能夠在其基準(zhǔn)驅(qū)動程序上輕松啟用此功能。
在每個測試變體中,我們添加了 10% 的寫入,以按相同的比例混合和減少搜索和讀取百分比。這些測試變體的目標(biāo)是了解每個產(chǎn)品如何處理數(shù)據(jù)的實時更新,我們認(rèn)為這是事實上的架構(gòu)目標(biāo),即寫入立即提交到索引,讀取始終是最新的。
正如您在圖表中所看到的,在 RedisJSON* 上不斷更新數(shù)據(jù)和增加寫入比例不會影響讀取或搜索性能并提高整體吞吐量。對數(shù)據(jù)產(chǎn)生的更新越多,對 ElasticSearch 性能的影響就越大,最終導(dǎo)致讀取和搜索速度變慢。
ElasticSearch 可實現(xiàn)的 ops/sec 從 0% 更新到 50% 的演變,我們注意到它在 0% 更新基準(zhǔn)上以 10k Ops/sec 開始,并受到嚴(yán)重影響,減少了 5 倍的 ops/sec,在50% 更新率基準(zhǔn)。
與我們在上述單個操作基準(zhǔn)中觀察到的類似,MongoDB 搜索性能比 RedisJSON* 和 ElasticSearch 慢兩個數(shù)量級,MongoDB 的最大總吞吐量為 424 ops/sec,而 RedisJSON* 為 16K 最大 ops/sec。
最后,對于混合工作負(fù)載,RedisJSON* 支持的操作數(shù)/秒比 MongoDB 高 50.8 倍,比 ElasticSearch 高 7 倍。如果我們將分析集中在混合工作負(fù)載期間的每種操作類型的延遲上,與 MongoDB 相比,RedisJSON* 可將延遲降低多達 91 倍,與 ElasticSearch 相比,延遲降低 23.7 倍。
每個解決方案的完整延遲分析
與測量每個解決方案飽和之前產(chǎn)生的吞吐量曲線類似,在所有解決方案通用的可持續(xù)負(fù)載下進行完整的延遲分析也很重要。這將使您能夠了解對于所有已發(fā)布操作在延遲方面最穩(wěn)定的解決方案是什么,以及哪種解決方案不易受到應(yīng)用程序邏輯引發(fā)的延遲峰值的影響(例如,彈性查詢緩存未命中)。如果您想更深入地了解我們?yōu)槭裁匆@樣做,Gil Tene 提供了延遲測量注意事項的深入概述。
查看上一節(jié)的吞吐量圖表,并關(guān)注 10% 更新基準(zhǔn)以包含所有三個操作,我們做了兩種不同的可持續(xù)負(fù)載變化:
250 ops/sec:比較 MongoDB、ElasticSearch 和 RedisJSON*,低于 MongoDB 的壓力率。
6000 ops/sec:比較 ElasticSearch 和 RedisJSON*,低于 ElasticSearch 壓力率。
在下面的第一張圖片中,展示了從 p0 到 p9999 的百分位數(shù),很明顯,在每次搜索時,MongoDB 的表現(xiàn)都遠(yuǎn)遠(yuǎn)優(yōu)于 Elastic 和 RedisJSON*。此外,關(guān)注 ElasticSearch 與 RedisJSON*,很明顯,ElasticSearch 容易受到較高延遲的影響,這很可能是由垃圾收集 (GC) 觸發(fā)器或搜索查詢緩存未命中引起的。
RedisJSON* 的 p99 低于 2.61 毫秒,而 ElasticSearch p999 搜索達到 10.28 毫秒。

在下面的讀取和更新圖表中,我們可以看到 RedisJSON* 在所有延遲范圍內(nèi)表現(xiàn)最佳,其次是 MongoDB 和 ElasticSearch。
RedisJSON* 是在所有分析的延遲百分位數(shù)上保持亞毫秒級延遲的唯一解決方案。在 p99,RedisJSON* 的延遲為 0.23 毫秒,其次是 MongoDB 的 5.01 毫秒和 ElasticSearch 的 10.49 毫秒。

在寫入時,MongoDB 和 RedisJSON* 即使在 p99 時也能保持亞毫秒級的延遲。另一方面,ElasticSearch 顯示出高尾延遲(> 10 毫秒),這很可能與導(dǎo)致 ElasticSearch 搜索峰值的原因 (GC) 相同。

僅關(guān)注 ElasticSearch 和 RedisJSON*,在保持 6K ops/sec 的可持續(xù)負(fù)載的同時,我們可以觀察到 Elastic 和 RedisJSON* 的讀取和更新模式與以 250 ops/sec 進行的分析保持一致。RedisJSON* 是更穩(wěn)定的解決方案,其 p99 讀取時間為 3 毫秒,而 Elastic 的 p99 讀取時間為 162 毫秒。
在更新時,RedisJSON* 保留了 3 毫秒的 p99,而 ElasticSearch 則保留了 167 毫秒的 p99。


專注于搜索操作,ElasticSearch 和 RedisJSON* 以個位數(shù) p50 延遲開始(p50 RedisJSON* 為 1.13 毫秒,而 ElasticSearch 的 p50 為 2.79 毫秒),其中 ElasticSearch 付出了 GC 觸發(fā)和查詢緩存未命中的代價在較高的百分位數(shù)上,在 >= p90 百分位數(shù)上清晰可見。
RedisJSON* 將 p99 保持在 33 毫秒以下,而 ElasticSearch 上的 p99 百分位數(shù)為 163 毫秒,高出 5 倍。

從上面測試結(jié)論可以看出,RedisJson幾乎在各個方面的性能可謂碾壓ES和Mongo,所以未來怎么搞,NoSQL要變天了嗎?
來源: blog.csdn.net/xiangzhihong8/article/details/121530019
精彩推薦:
Spring Event,賊好用的業(yè)務(wù)解耦神器!
一款 SpringBoot 項目下最優(yōu)雅的 HTTP 客戶端工具,真心強大!
SpringBoot+Nginx實現(xiàn)負(fù)載均衡
