Loki 源碼分析之日志寫入
前面我們介紹了 Loki 的一些基本使用配置,但是對(duì) Loki 還是了解不夠深入,官方文檔寫得較為凌亂,而且沒有跟上新版本,為了能夠?qū)?Loki 有一個(gè)更深入的認(rèn)識(shí),做到有的放矢,這里面我們嘗試對(duì) Loki 的源碼進(jìn)行一些簡單的分析,由于有很多模塊和實(shí)現(xiàn)細(xì)節(jié),這里我們主要是對(duì)核心功能進(jìn)行分析,希望對(duì)大家有所幫助。本文首先對(duì)日志的寫入過程進(jìn)行簡單分析。
Distributor Push API
Promtail 通過 Loki 的 Push API 接口推送日志數(shù)據(jù),該接口在初始化 Distributor 的時(shí)候進(jìn)行初始化,在控制器基礎(chǔ)上包裝了兩個(gè)中間件,其中的 HTTPAuthMiddleware 就是獲取租戶 ID,如果開啟了認(rèn)證配置,則從 X-Scope-OrgID 這個(gè)請(qǐng)求 Header 頭里面獲取,如果沒有配置則用默認(rèn)的 fake 代替。
// pkg/loki/modules.go
func (t *Loki) initDistributor() (services.Service, error) {
......
if t.cfg.Target != All {
logproto.RegisterPusherServer(t.Server.GRPC, t.distributor)
}
pushHandler := middleware.Merge(
serverutil.RecoveryHTTPMiddleware,
t.HTTPAuthMiddleware,
).Wrap(http.HandlerFunc(t.distributor.PushHandler))
t.Server.HTTP.Handle("/api/prom/push", pushHandler)
t.Server.HTTP.Handle("/loki/api/v1/push", pushHandler)
return t.distributor, nil
}
Push API 處理器實(shí)現(xiàn)如下所示,首先通過 ParseRequest 函數(shù)將 Http 請(qǐng)求轉(zhuǎn)換成 logproto.PushRequest,然后直接調(diào)用 Distributor 下面的 Push 函數(shù)來推送日志數(shù)據(jù):
// pkg/distributor/http.go
// PushHandler 從 HTTP body 中讀取一個(gè) snappy 壓縮的 proto
func (d *Distributor) PushHandler(w http.ResponseWriter, r *http.Request) {
logger := util_log.WithContext(r.Context(), util_log.Logger)
userID, _ := user.ExtractOrgID(r.Context())
req, err := ParseRequest(logger, userID, r)
......
_, err = d.Push(r.Context(), req)
......
}
func ParseRequest(logger gokit.Logger, userID string, r *http.Request) (*logproto.PushRequest, error) {
var body lokiutil.SizeReader
contentEncoding := r.Header.Get(contentEnc)
switch contentEncoding {
case "":
body = lokiutil.NewSizeReader(r.Body)
case "snappy":
body = lokiutil.NewSizeReader(r.Body)
case "gzip":
gzipReader, err := gzip.NewReader(r.Body)
if err != nil {
return nil, err
}
defer gzipReader.Close()
body = lokiutil.NewSizeReader(gzipReader)
default:
return nil, fmt.Errorf("Content-Encoding %q not supported", contentEncoding)
}
contentType := r.Header.Get(contentType)
var req logproto.PushRequest
......
switch contentType {
case applicationJSON:
var err error
if loghttp.GetVersion(r.RequestURI) == loghttp.VersionV1 {
err = unmarshal.DecodePushRequest(body, &req)
} else {
err = unmarshal_legacy.DecodePushRequest(body, &req)
}
if err != nil {
return nil, err
}
default:
// When no content-type header is set or when it is set to
// `application/x-protobuf`: expect snappy compression.
if err := util.ParseProtoReader(r.Context(), body, int(r.ContentLength), math.MaxInt32, &req, util.RawSnappy); err != nil {
return nil, err
}
}
return &req, nil
}
首先我們先了解下 PushRequest 的結(jié)構(gòu),PushRequest 就是一個(gè) Stream 集合:
// pkg/logproto/logproto.pb.go
type PushRequest struct {
Streams []Stream `protobuf:"bytes,1,rep,name=streams,proto3,customtype=Stream" json:"streams"`
}
// pkg/logproto/types.go
// Stream 流包含一個(gè)唯一的標(biāo)簽集,作為一個(gè)字符串,然后還包含一組日志條目
type Stream struct {
Labels string `protobuf:"bytes,1,opt,name=labels,proto3" json:"labels"`
Entries []Entry `protobuf:"bytes,2,rep,name=entries,proto3,customtype=EntryAdapter" json:"entries"`
}
// Entry 是一個(gè)帶有時(shí)間戳的日志條目
type Entry struct {
Timestamp time.Time `protobuf:"bytes,1,opt,name=timestamp,proto3,stdtime" json:"ts"`
Line string `protobuf:"bytes,2,opt,name=line,proto3" json:"line"`
}


然后查看 Distributor 下的 Push 函數(shù)實(shí)現(xiàn):
// pkg/distributor/distributor.go
// Push 日志流集合
func (d *Distributor) Push(ctx context.Context, req *logproto.PushRequest) (*logproto.PushResponse, error) {
// 獲取租戶ID
userID, err := user.ExtractOrgID(ctx)
......
// 首先把請(qǐng)求平鋪成一個(gè)樣本的列表
streams := make([]streamTracker, 0, len(req.Streams))
keys := make([]uint32, 0, len(req.Streams))
var validationErr error
validatedSamplesSize := 0
validatedSamplesCount := 0
validationContext := d.validator.getValidationContextFor(userID)
for _, stream := range req.Streams {
// 解析日志流標(biāo)簽
stream.Labels, err = d.parseStreamLabels(validationContext, stream.Labels, &stream)
......
n := 0
for _, entry := range stream.Entries {
// 校驗(yàn)一個(gè)日志Entry實(shí)體
if err := d.validator.ValidateEntry(validationContext, stream.Labels, entry); err != nil {
validationErr = err
continue
}
stream.Entries[n] = entry
n++
// 校驗(yàn)成功的樣本大小和個(gè)數(shù)
validatedSamplesSize += len(entry.Line)
validatedSamplesCount++
}
// 去掉校驗(yàn)失敗的實(shí)體
stream.Entries = stream.Entries[:n]
if len(stream.Entries) == 0 {
continue
}
// 為當(dāng)前日志流生成用于hash換的token值
keys = append(keys, util.TokenFor(userID, stream.Labels))
streams = append(streams, streamTracker{
stream: stream,
})
}
if len(streams) == 0 {
return &logproto.PushResponse{}, validationErr
}
now := time.Now()
// 每個(gè)租戶有一個(gè)限速器,判斷可以正常傳輸?shù)娜罩敬笮∈欠駪?yīng)該被限制
if !d.ingestionRateLimiter.AllowN(now, userID, validatedSamplesSize) {
// 返回429表明客戶端被限速了
......
return nil, httpgrpc.Errorf(http.StatusTooManyRequests, validation.RateLimitedErrorMsg, int(d.ingestionRateLimiter.Limit(now, userID)), validatedSamplesCount, validatedSamplesSize)
}
const maxExpectedReplicationSet = 5 // typical replication factor 3 plus one for inactive plus one for luck
var descs [maxExpectedReplicationSet]ring.InstanceDesc
samplesByIngester := map[string][]*streamTracker{}
ingesterDescs := map[string]ring.InstanceDesc{}
for i, key := range keys {
// ReplicationSet 描述了一個(gè)指定的鍵與哪些 Ingesters 進(jìn)行對(duì)話,以及可以容忍多少個(gè)錯(cuò)誤
// 根據(jù) label hash 到 hash 環(huán)上獲取對(duì)應(yīng)的 ingester 節(jié)點(diǎn),一個(gè)節(jié)點(diǎn)可能有多個(gè)對(duì)等的 ingester 副本來做 HA
replicationSet, err := d.ingestersRing.Get(key, ring.Write, descs[:0], nil, nil)
......
// 最小成功的實(shí)例樹
streams[i].minSuccess = len(replicationSet.Ingesters) - replicationSet.MaxErrors
// 可容忍的最大故障實(shí)例數(shù)
streams[i].maxFailures = replicationSet.MaxErrors
// 將 Stream 按對(duì)應(yīng)的 ingester 進(jìn)行分組
for _, ingester := range replicationSet.Ingesters {
// 配置每個(gè) ingester 副本對(duì)應(yīng)的日志流數(shù)據(jù)
samplesByIngester[ingester.Addr] = append(samplesByIngester[ingester.Addr], &streams[i])
ingesterDescs[ingester.Addr] = ingester
}
}
tracker := pushTracker{
done: make(chan struct{}),
err: make(chan error),
}
tracker.samplesPending.Store(int32(len(streams)))
// 循環(huán)Ingesters
for ingester, samples := range samplesByIngester {
// 讓ingester并行處理通過hash環(huán)對(duì)應(yīng)的日志流列表
go func(ingester ring.InstanceDesc, samples []*streamTracker) {
......
// 將日志流樣本數(shù)據(jù)下發(fā)給對(duì)應(yīng)的 ingester 節(jié)點(diǎn)
d.sendSamples(localCtx, ingester, samples, &tracker)
}(ingesterDescs[ingester], samples)
}
......
}
Push 函數(shù)的核心就是根據(jù)日志流的標(biāo)簽來計(jì)算一個(gè) Token 值,根據(jù)這個(gè) Token 值去哈希環(huán)上獲取對(duì)應(yīng)的處理日志的 Ingester 實(shí)例,然后并行通過 Ingester 處理日志流數(shù)據(jù),通過 sendSamples 函數(shù)為單個(gè) ingester 去發(fā)送日志樣本數(shù)據(jù):
// pkg/distributor/distributor.go
func (d *Distributor) sendSamples(ctx context.Context, ingester ring.InstanceDesc, streamTrackers []*streamTracker, pushTracker *pushTracker) {
err := d.sendSamplesErr(ctx, ingester, streamTrackers)
......
}
func (d *Distributor) sendSamplesErr(ctx context.Context, ingester ring.InstanceDesc, streams []*streamTracker) error {
// 根據(jù) ingester 地址獲取 client
c, err := d.pool.GetClientFor(ingester.Addr)
......
// 重新構(gòu)造 PushRequest
req := &logproto.PushRequest{
Streams: make([]logproto.Stream, len(streams)),
}
for i, s := range streams {
req.Streams[i] = s.stream
}
// 通過 Ingester 客戶端請(qǐng)求數(shù)據(jù)
_, err = c.(logproto.PusherClient).Push(ctx, req)
......
}
Ingester 寫入日志
Ingester 客戶端中的 Push 函數(shù)實(shí)際上就是一個(gè) gRPC 服務(wù)的客戶端:
// pkg/ingester/ingester.go
// Push 實(shí)現(xiàn) logproto.Pusher.
func (i *Ingester) Push(ctx context.Context, req *logproto.PushRequest) (*logproto.PushResponse, error) {
// 獲取租戶ID
instanceID, err := user.ExtractOrgID(ctx)
......
// 根據(jù)租戶ID獲取 instance 對(duì)象
instance := i.getOrCreateInstance(instanceID)
// 直接調(diào)用 instance 對(duì)象 Push 數(shù)據(jù)
err = instance.Push(ctx, req)
return &logproto.PushResponse{}, err
}
instance 下的 Push 函數(shù):
// pkg/ingester/instance.go
func (i *instance) Push(ctx context.Context, req *logproto.PushRequest) error {
record := recordPool.GetRecord()
record.UserID = i.instanceID
defer recordPool.PutRecord(record)
i.streamsMtx.Lock()
defer i.streamsMtx.Unlock()
var appendErr error
for _, s := range req.Streams {
// 獲取一個(gè) stream 對(duì)象
stream, err := i.getOrCreateStream(s, false, record)
if err != nil {
appendErr = err
continue
}
// 真正用于數(shù)據(jù)處理的是 stream 對(duì)象中的 Push 函數(shù)
if _, err := stream.Push(ctx, s.Entries, record); err != nil {
appendErr = err
continue
}
}
......
return appendErr
}
func (i *instance) getOrCreateStream(pushReqStream logproto.Stream, lock bool, record *WALRecord) (*stream, error) {
if lock {
i.streamsMtx.Lock()
defer i.streamsMtx.Unlock()
}
// 如果 streams 中包含當(dāng)前標(biāo)簽列表對(duì)應(yīng)的 stream 對(duì)象,則直接返回
stream, ok := i.streams[pushReqStream.Labels]
if ok {
return stream, nil
}
// record 只在重放 WAL 時(shí)為 nil
// 我們不希望在重放 WAL 后丟掉數(shù)據(jù)
// 為 instance 降低 stream 流限制
var err error
if record != nil {
// 限流器判斷
// AssertMaxStreamsPerUser 確保與當(dāng)前輸入的流數(shù)量沒有達(dá)到限制
err = i.limiter.AssertMaxStreamsPerUser(i.instanceID, len(i.streams))
}
......
// 解析日志流標(biāo)簽集
labels, err := logql.ParseLabels(pushReqStream.Labels)
......
// 獲取對(duì)應(yīng)標(biāo)簽集的指紋
fp := i.getHashForLabels(labels)
// 重新實(shí)例化一個(gè) stream 對(duì)象,這里還會(huì)維護(hù)日志流的倒排索引
sortedLabels := i.index.Add(client.FromLabelsToLabelAdapters(labels), fp)
stream = newStream(i.cfg, fp, sortedLabels, i.metrics)
// 將stream設(shè)置到streams中去
i.streams[pushReqStream.Labels] = stream
i.streamsByFP[fp] = stream
// 當(dāng)重放 wal 的時(shí)候 record 是 nil (我們不希望在重放時(shí)重寫 wal entries).
if record != nil {
record.Series = append(record.Series, tsdb_record.RefSeries{
Ref: uint64(fp),
Labels: sortedLabels,
})
} else {
// 如果 record 為 nil,這就是一個(gè) WAL 恢復(fù)
i.metrics.recoveredStreamsTotal.Inc()
}
......
i.addTailersToNewStream(stream)
return stream, nil
}
這個(gè)里面涉及到 WAL 這一塊的設(shè)計(jì),比較復(fù)雜,我們可以先看 stream 下面的 Push 函數(shù)實(shí)現(xiàn),主要就是將收到的 []Entry 先 Append 到內(nèi)存中的 Chunk 流([]chunkDesc) 中:
// pkg/ingester/stream.go
func (s *stream) Push(ctx context.Context, entries []logproto.Entry, record *WALRecord) (int, error) {
s.chunkMtx.Lock()
defer s.chunkMtx.Unlock()
var bytesAdded int
prevNumChunks := len(s.chunks)
var lastChunkTimestamp time.Time
// 如果之前的 chunks 列表為空,則創(chuàng)建一個(gè)新的 chunk
if prevNumChunks == 0 {
s.chunks = append(s.chunks, chunkDesc{
chunk: s.NewChunk(),
})
chunksCreatedTotal.Inc()
} else {
// 獲取最新一個(gè)chunk的日志時(shí)間戳
_, lastChunkTimestamp = s.chunks[len(s.chunks)-1].chunk.Bounds()
}
var storedEntries []logproto.Entry
failedEntriesWithError := []entryWithError{}
for i := range entries {
// 如果這個(gè)日志條目與我們最后 append 的一行的時(shí)間戳和內(nèi)容相匹配,則忽略它
if entries[i].Timestamp.Equal(s.lastLine.ts) && entries[i].Line == s.lastLine.content {
continue
}
// 最新的一個(gè) chunk
chunk := &s.chunks[len(s.chunks)-1]
// 如果當(dāng)前chunk已經(jīng)關(guān)閉 或者 已經(jīng)達(dá)到設(shè)置的最大 Chunk 大小
if chunk.closed || !chunk.chunk.SpaceFor(&entries[i]) || s.cutChunkForSynchronization(entries[i].Timestamp, lastChunkTimestamp, chunk, s.cfg.SyncPeriod, s.cfg.SyncMinUtilization) {
// 如果 chunk 沒有更多的空間,則調(diào)用 Close 來以確保 head block 中的數(shù)據(jù)都被切割和壓縮。
err := chunk.chunk.Close()
......
chunk.closed = true
......
// Append 一個(gè)新的 Chunk
s.chunks = append(s.chunks, chunkDesc{
chunk: s.NewChunk(),
})
chunk = &s.chunks[len(s.chunks)-1]
lastChunkTimestamp = time.Time{}
}
// 往 chunk 里面 Append 日志數(shù)據(jù)
if err := chunk.chunk.Append(&entries[i]); err != nil {
failedEntriesWithError = append(failedEntriesWithError, entryWithError{&entries[i], err})
} else {
// 存儲(chǔ)添加到 chunk 中的日志數(shù)據(jù)
storedEntries = append(storedEntries, entries[i])
// 配置最后日志行的數(shù)據(jù)
lastChunkTimestamp = entries[i].Timestamp
s.lastLine.ts = lastChunkTimestamp
s.lastLine.content = entries[i].Line
// 累計(jì)大小
bytesAdded += len(entries[i].Line)
}
chunk.lastUpdated = time.Now()
}
if len(storedEntries) != 0 {
// 當(dāng)重放 wal 的時(shí)候 record 將為 nil(我們不希望在重放的時(shí)候重寫wal日志條目)
if record != nil {
record.AddEntries(uint64(s.fp), storedEntries...)
}
// 后續(xù)是用與tail日志的處理
......
}
......
// 如果新增了chunks
if len(s.chunks) != prevNumChunks {
memoryChunks.Add(float64(len(s.chunks) - prevNumChunks))
}
return bytesAdded, nil
}
Chunk 其實(shí)就是多條日志構(gòu)成的壓縮包,將日志壓成 Chunk 的可以直接存入對(duì)象存儲(chǔ), 一個(gè) Chunk 到達(dá)指定大小之前會(huì)不斷 Append 新的日志到里面,而在達(dá)到大小之后, Chunk 就會(huì)關(guān)閉等待持久化(強(qiáng)制持久化也會(huì)關(guān)閉 Chunk, 比如關(guān)閉 ingester 實(shí)例時(shí)就會(huì)關(guān)閉所有的 Chunk 并持久化)。Chunk 的大小控制很重要:
假如 Chunk 容量過小: 首先是導(dǎo)致壓縮效率不高,同時(shí)也會(huì)增加整體的 Chunk 數(shù)量, 導(dǎo)致倒排索引過大,最后, 對(duì)象存儲(chǔ)的操作次數(shù)也會(huì)變多, 帶來額外的性能開銷 假如 Chunk 過大: 一個(gè) Chunk 的 open 時(shí)間會(huì)更長, 占用額外的內(nèi)存空間, 同時(shí), 也增加了丟數(shù)據(jù)的風(fēng)險(xiǎn),Chunk 過大也會(huì)導(dǎo)致查詢讀放大

(圖片來源: https://aleiwu.com/post/grafana-loki/)
在將日志流追加到 Chunk 中過后,在 Ingester 初始化時(shí)會(huì)啟動(dòng)兩個(gè)循環(huán)去處理 Chunk 數(shù)據(jù),分別從 chunks 數(shù)據(jù)取出存入優(yōu)先級(jí)隊(duì)列,另外一個(gè)循環(huán)定期檢查從內(nèi)存中刪除已經(jīng)持久化過后的數(shù)據(jù)。
首先是 Ingester 中定義了一個(gè) flushQueues 屬性,是一個(gè)優(yōu)先級(jí)隊(duì)列數(shù)組,該隊(duì)列中存放的是 flushOp:
// pkg/ingester/ingester.go
type Ingester struct {
services.Service
......
// 每個(gè) flush 線程一個(gè)隊(duì)列,指紋用來選擇隊(duì)列
flushQueues []*util.PriorityQueue // 優(yōu)先級(jí)隊(duì)列數(shù)組
flushQueuesDone sync.WaitGroup
......
}
// pkg/ingester/flush.go
// 優(yōu)先級(jí)隊(duì)列中存放的數(shù)據(jù)
type flushOp struct {
from model.Time
userID string
fp model.Fingerprint
immediate bool
}
在初始化 Ingester 的時(shí)候會(huì)根據(jù)傳遞的 ConcurrentFlushes 參數(shù)來實(shí)例化 flushQueues 的大小:
// pkg/ingester/ingester.go
func New(cfg Config, clientConfig client.Config, store ChunkStore, limits *validation.Overrides, configs *runtime.TenantConfigs, registerer prometheus.Registerer) (*Ingester, error) {
......
i := &Ingester{
......
flushQueues: make([]*util.PriorityQueue, cfg.ConcurrentFlushes),
......
}
......
i.Service = services.NewBasicService(i.starting, i.running, i.stopping)
return i, nil
}
然后通過 services.NewBasicService 實(shí)例化 Service 的時(shí)候指定了服務(wù)的 Starting、Running、Stopping 3 個(gè)狀態(tài),在其中的 staring 狀態(tài)函數(shù)中會(huì)啟動(dòng)協(xié)程去消費(fèi)優(yōu)先級(jí)隊(duì)列中的數(shù)據(jù)
// pkg/ingester/ingester.go
func (i *Ingester) starting(ctx context.Context) error {
// todo,如果開啟了 WAL 的處理
......
// 初始化 flushQueues
i.InitFlushQueues()
......
// 啟動(dòng)循環(huán)檢查chunk數(shù)據(jù)
i.loopDone.Add(1)
go i.loop()
return nil
}
初始化 flushQueues 實(shí)現(xiàn)如下所示,其中 flushQueuesDone 是一個(gè) WaitGroup,根據(jù)配置的并發(fā)數(shù)量并發(fā)執(zhí)行 flushLoop 操作:
// pkg/ingester/flush.go
func (i *Ingester) InitFlushQueues() {
i.flushQueuesDone.Add(i.cfg.ConcurrentFlushes)
for j := 0; j < i.cfg.ConcurrentFlushes; j++ {
// 為每個(gè)協(xié)程構(gòu)造一個(gè)優(yōu)先級(jí)隊(duì)列
i.flushQueues[j] = util.NewPriorityQueue(flushQueueLength)
go i.flushLoop(j)
}
}
每一個(gè)優(yōu)先級(jí)隊(duì)列循環(huán)消費(fèi)數(shù)據(jù):
// pkg/ingester/flush.go
func (i *Ingester) flushLoop(j int) {
......
for {
// 從隊(duì)列中根據(jù)優(yōu)先級(jí)取出數(shù)據(jù)
o := i.flushQueues[j].Dequeue()
if o == nil {
return
}
op := o.(*flushOp)
// 執(zhí)行真正的刷新用戶序列數(shù)據(jù)
err := i.flushUserSeries(op.userID, op.fp, op.immediate)
......
// 如果退出時(shí)刷新失敗了,把失敗的操作放回到隊(duì)列中去。
if op.immediate && err != nil {
op.from = op.from.Add(flushBackoff)
i.flushQueues[j].Enqueue(op)
}
}
}
刷新用戶的序列操作,也就是要保存到存儲(chǔ)中去:
// pkg/ingester/flush.go
// 根據(jù)用戶ID刷新用戶日志序列
func (i *Ingester) flushUserSeries(userID string, fp model.Fingerprint, immediate bool) error {
instance, ok := i.getInstanceByID(userID)
......
// 根據(jù)instance和fp指紋數(shù)據(jù)獲取需要刷新的chunks
chunks, labels, chunkMtx := i.collectChunksToFlush(instance, fp, immediate)
......
// 執(zhí)行真正的刷新 chunks 操作
err := i.flushChunks(ctx, fp, labels, chunks, chunkMtx)
......
}
// 收集需要刷新的 chunks
func (i *Ingester) collectChunksToFlush(instance *instance, fp model.Fingerprint, immediate bool) ([]*chunkDesc, labels.Labels, *sync.RWMutex) {
instance.streamsMtx.Lock()
// 根據(jù)指紋數(shù)據(jù)獲取 stream
stream, ok := instance.streamsByFP[fp]
instance.streamsMtx.Unlock()
if !ok {
return nil, nil, nil
}
var result []*chunkDesc
stream.chunkMtx.Lock()
defer stream.chunkMtx.Unlock()
// 循環(huán)所有chunks
for j := range stream.chunks {
// 判斷是否應(yīng)該刷新當(dāng)前chunk
shouldFlush, reason := i.shouldFlushChunk(&stream.chunks[j])
if immediate || shouldFlush {
// 確保不再對(duì)該塊進(jìn)行寫操作(如果沒有關(guān)閉,則設(shè)置為關(guān)閉狀態(tài))
if !stream.chunks[j].closed {
stream.chunks[j].closed = true
}
// 如果該 chunk 還沒有被成功刷新,則刷新這個(gè)塊
if stream.chunks[j].flushed.IsZero() {
result = append(result, &stream.chunks[j])
......
}
}
}
return result, stream.labels, &stream.chunkMtx
}
下面是判斷一個(gè)具體的 chunk 是否應(yīng)該被刷新的邏輯:
// pkg/ingester/flush.go
func (i *Ingester) shouldFlushChunk(chunk *chunkDesc) (bool, string) {
// chunk關(guān)閉了也應(yīng)該刷新了
if chunk.closed {
if chunk.synced {
return true, flushReasonSynced
}
return true, flushReasonFull
}
// chunk最后更新的時(shí)間超過了配置的 chunk 空閑時(shí)間 MaxChunkIdle
if time.Since(chunk.lastUpdated) > i.cfg.MaxChunkIdle {
return true, flushReasonIdle
}
// chunk的邊界時(shí)間操過了配置的 chunk 最大時(shí)間 MaxChunkAge
if from, to := chunk.chunk.Bounds(); to.Sub(from) > i.cfg.MaxChunkAge {
return true, flushReasonMaxAge
}
return false, ""
}
真正將 chunks 數(shù)據(jù)刷新保存到存儲(chǔ)中是 flushChunks 函數(shù)實(shí)現(xiàn)的:
// pkg/ingester/flush.go
func (i *Ingester) flushChunks(ctx context.Context, fp model.Fingerprint, labelPairs labels.Labels, cs []*chunkDesc, chunkMtx sync.Locker) error {
......
wireChunks := make([]chunk.Chunk, len(cs))
// 下面的匿名函數(shù)用于生成保存到存儲(chǔ)中的chunk數(shù)據(jù)
err = func() error {
chunkMtx.Lock()
defer chunkMtx.Unlock()
for j, c := range cs {
if err := c.chunk.Close(); err != nil {
return err
}
firstTime, lastTime := loki_util.RoundToMilliseconds(c.chunk.Bounds())
ch := chunk.NewChunk(
userID, fp, metric,
chunkenc.NewFacade(c.chunk, i.cfg.BlockSize, i.cfg.TargetChunkSize),
firstTime,
lastTime,
)
chunkSize := c.chunk.BytesSize() + 4*1024 // size + 4kB should be enough room for cortex header
start := time.Now()
if err := ch.EncodeTo(bytes.NewBuffer(make([]byte, 0, chunkSize))); err != nil {
return err
}
wireChunks[j] = ch
}
return nil
}()
// 通過 store 接口保存 chunk 數(shù)據(jù)
if err := i.store.Put(ctx, wireChunks); err != nil {
return err
}
......
chunkMtx.Lock()
defer chunkMtx.Unlock()
for i, wc := range wireChunks {
// flush 成功,寫入刷新時(shí)間
cs[i].flushed = time.Now()
// 下是一些監(jiān)控?cái)?shù)據(jù)更新
......
}
return nil
}
chunk 數(shù)據(jù)被寫入到存儲(chǔ)后,還有有一個(gè)協(xié)程會(huì)去定時(shí)清理本地的這些 chunk 數(shù)據(jù),在上面的 Ingester 的 staring 函數(shù)中最后有一個(gè) go i.loop(),在這個(gè) loop() 函數(shù)中會(huì)每隔 FlushCheckPeriod(默認(rèn) 30s,可以通過 --ingester.flush-check-period 進(jìn)行配置)時(shí)間就會(huì)去去調(diào)用 sweepUsers 函數(shù)進(jìn)行垃圾回收:
// pkg/ingester/ingester.go
func (i *Ingester) loop() {
defer i.loopDone.Done()
flushTicker := time.NewTicker(i.cfg.FlushCheckPeriod)
defer flushTicker.Stop()
for {
select {
case <-flushTicker.C:
i.sweepUsers(false, true)
case <-i.loopQuit:
return
}
}
}
sweepUsers 函數(shù)用于執(zhí)行將日志流數(shù)據(jù)加入到優(yōu)先級(jí)隊(duì)列中,并對(duì)沒有序列的用戶進(jìn)行垃圾回收:
// pkg/ingester/flush.go
// sweepUsers 定期執(zhí)行 flush 操作,并對(duì)沒有序列的用戶進(jìn)行垃圾回收
func (i *Ingester) sweepUsers(immediate, mayRemoveStreams bool) {
instances := i.getInstances()
for _, instance := range instances {
i.sweepInstance(instance, immediate, mayRemoveStreams)
}
}
func (i *Ingester) sweepInstance(instance *instance, immediate, mayRemoveStreams bool) {
instance.streamsMtx.Lock()
defer instance.streamsMtx.Unlock()
for _, stream := range instance.streams {
i.sweepStream(instance, stream, immediate)
i.removeFlushedChunks(instance, stream, mayRemoveStreams)
}
}
// must hold streamsMtx
func (i *Ingester) sweepStream(instance *instance, stream *stream, immediate bool) {
stream.chunkMtx.RLock()
defer stream.chunkMtx.RUnlock()
if len(stream.chunks) == 0 {
return
}
// 最新的chunk
lastChunk := stream.chunks[len(stream.chunks)-1]
// 判斷是否應(yīng)該被flush
shouldFlush, _ := i.shouldFlushChunk(&lastChunk)
// 如果只有一個(gè)chunk并且不是強(qiáng)制持久化切最新的chunk還不應(yīng)該被flush,則直接返回
if len(stream.chunks) == 1 && !immediate && !shouldFlush {
return
}
// 根據(jù)指紋獲取用與處理的優(yōu)先級(jí)隊(duì)列索引
flushQueueIndex := int(uint64(stream.fp) % uint64(i.cfg.ConcurrentFlushes))
firstTime, _ := stream.chunks[0].chunk.Bounds()
// 加入到優(yōu)先級(jí)隊(duì)列中去
i.flushQueues[flushQueueIndex].Enqueue(&flushOp{
model.TimeFromUnixNano(firstTime.UnixNano()), instance.instanceID,
stream.fp, immediate,
})
}
// 移除已經(jīng)flush過后的chunks數(shù)據(jù)
func (i *Ingester) removeFlushedChunks(instance *instance, stream *stream, mayRemoveStream bool) {
now := time.Now()
stream.chunkMtx.Lock()
defer stream.chunkMtx.Unlock()
prevNumChunks := len(stream.chunks)
var subtracted int
for len(stream.chunks) > 0 {
// 如果chunk還沒有被刷新到存儲(chǔ) 或者 chunk被刷新到存儲(chǔ)到現(xiàn)在的時(shí)間還沒操過 RetainPeriod(默認(rèn)15分鐘,可以通過--ingester.chunks-retain-period 進(jìn)行配置)則忽略
if stream.chunks[0].flushed.IsZero() || now.Sub(stream.chunks[0].flushed) < i.cfg.RetainPeriod {
break
}
subtracted += stream.chunks[0].chunk.UncompressedSize()
// 刪除引用,以便該塊可以被垃圾回收起來
stream.chunks[0].chunk = nil
// 移除chunk
stream.chunks = stream.chunks[1:]
}
......
// 如果stream中的所有chunk都被清空了,則清空該 stream 的相關(guān)數(shù)據(jù)
if mayRemoveStream && len(stream.chunks) == 0 {
delete(instance.streamsByFP, stream.fp)
delete(instance.streams, stream.labelsString)
instance.index.Delete(stream.labels, stream.fp)
......
}
}
關(guān)于存儲(chǔ)或者查詢等模塊的實(shí)現(xiàn)在后文再繼續(xù)探索,包括 WAL 的實(shí)現(xiàn)也較為復(fù)雜。
K8S 進(jìn)階訓(xùn)練營
點(diǎn)擊屏末 | 閱讀原文 | 即刻學(xué)習(xí)
