<kbd id="afajh"><form id="afajh"></form></kbd>
<strong id="afajh"><dl id="afajh"></dl></strong>
    <del id="afajh"><form id="afajh"></form></del>
        1. <th id="afajh"><progress id="afajh"></progress></th>
          <b id="afajh"><abbr id="afajh"></abbr></b>
          <th id="afajh"><progress id="afajh"></progress></th>

          2020推薦系統(tǒng)算法一覽、實(shí)踐

          共 8767字,需瀏覽 18分鐘

           ·

          2021-03-26 11:43


          向AI轉(zhuǎn)型的程序員都關(guān)注了這個(gè)號(hào)??????

          人工智能大數(shù)據(jù)與深度學(xué)習(xí)  公眾號(hào):datayx



          國外前沿

          以下引用都高


          Fairness-Aware Ranking in Search & Recommendation Systems with Application to LinkedIn Talent Search 【2019】


          Learning binary codes with neural collaborative filtering for efficient recommendation systems【2019】


          經(jīng)典論文

          篩選文章的標(biāo)準(zhǔn):前沿或者經(jīng)典的,工程導(dǎo)向的,google、阿里、facebook等一線互聯(lián)網(wǎng)公司出品的:


          Wide & Deep Learning for Recommender Systems

          google 的 wide&deep,必看論文,經(jīng)典到難以附加


          DeepFM: An End-to-End Wide & Deep Learning Framework for CTR Prediction

          華為對(duì)wide&deep的改進(jìn),加了wide層的交叉項(xiàng)。如今工業(yè)界的主流模型


          Practical lessons from predicting clicks on ads at facebook

          facebook GBDT+LR的經(jīng)典方案。雖然如今已不是主流方案,但論文中的思想很值得學(xué)習(xí)。


          Deep Neural Networks for YouTube Recommendations

          介紹了Youtube推薦系統(tǒng)工業(yè)界架構(gòu)與方案,經(jīng)典必看


          Real-time Personalization using Embeddings for Search Ranking at Airbnb

          KDD2018 best paper,Embedding 必看論文,非常經(jīng)典


          Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate

          阿里的多目標(biāo)學(xué)習(xí)經(jīng)典方案,同時(shí)優(yōu)化CTR & CVR


          Real-time Personalization using Embeddings for Search Ranking at Airbnb

          介紹了 airbnb 搜索排序模型的演進(jìn),工業(yè)性質(zhì)很強(qiáng),值得參考


          搜索引擎點(diǎn)擊模型綜述

          清華馬少平團(tuán)隊(duì)的文章點(diǎn)擊模型入門必看,搜索引擎點(diǎn)擊模型綜述


          論文附帶的開源項(xiàng)目

          重在對(duì)自己算法的實(shí)現(xiàn)

          Hyperbolic (ordinary and variational) autoencoders for recommender systems-2020

          https://github.com/evfro/HyperbolicRecommenders



          Hieararchical RNN recommender with temporal modeling-2017


          fashion-recommendation-2018

          In this project, I created an end-to-end solution for large-scale image classification and visual recommendation on fashion images. More specifically, my model can learn the important regions in an image and generate diverse recommendations based on such semantic similarity.

          https://github.com/khanhnamle1994/fashion-recommendation



          綜述性復(fù)現(xiàn)

          1.NeuRec -2020

          復(fù)現(xiàn)了2013-2019年多篇論文,當(dāng)然bug也多,有一定學(xué)習(xí)價(jià)值項(xiàng)目地址,目前700星星左右2020/11/27

          https://github.com/wubinzzu/NeuRec



          2.RecSys2019_DeepLearning_Evaluation-2019

          https://github.com/MaurizioFD/RecSys2019_DeepLearning_Evaluation



          3. 推薦動(dòng)手實(shí)現(xiàn)-facebookresearch/dlrm-2019

          https://github.com/facebookresearch/dlrm


          單肩包/雙肩包/斜挎包/手提包/胸包/旅行包/上課書包 /個(gè)性布袋等各式包飾挑選

          https://shop585613237.taobao.com/


          KDD(https://www.kdd.org/kdd2020/)是推薦領(lǐng)域一個(gè)頂級(jí)的國際會(huì)議。本次接收的論文按照推薦系統(tǒng)應(yīng)用場(chǎng)景可以大致劃分為:CTR預(yù)估、TopN推薦、對(duì)話式推薦、序列推薦等。同時(shí),GNN、強(qiáng)化學(xué)習(xí)、多任務(wù)學(xué)習(xí)、遷移學(xué)習(xí)、AutoML、元學(xué)習(xí)在推薦系統(tǒng)的落地應(yīng)用也成為當(dāng)下的主要研究點(diǎn)。此屆會(huì)議有很大一部分來自工業(yè)界的論文,包括Google、Microsoft、Criteo、Spotify以及國內(nèi)大廠阿里、百度、字節(jié)、華為、滴滴等。

          CTR Prediction

          1. AutoFIS: Automatic Feature Interaction Selection in Factorization Models for Click-Through Rate Prediction 【華為諾亞】

          簡(jiǎn)介:本文采用AutoML的搜索方法選擇重要性高的二次特征交互項(xiàng)、去除干擾項(xiàng),提升FM、DeepFM這類模型的準(zhǔn)確率。
          論文:arxiv.org/abs/2003.1123

          2. Category-Specific CNN for Visual-aware CTR Prediction at JD.com 【京東】

          論文:arxiv.org/abs/2006.1033

          3. Towards Automated Neural Interaction Discovering for Click-Through Rate Prediction 【Facebook】

          論文:arxiv.org/abs/2007.0643

          Graph-based Recommendation

          1. A Framework for Recommending Accurate and Diverse Items Using Bayesian Graph Convolutional Neural Networks 【華為諾亞】

          2. An Efficient Neighborhood-based Interaction Model for Recommendation on Heterogeneous Graph 【Amazon】

          論文:arxiv.org/abs/2007.0021

          3. M2GRL: A Multi-task Multi-view Graph Representation Learning Framework for Web-scale Recommender Systems 【阿里】

          簡(jiǎn)介:本文通過關(guān)聯(lián)多個(gè)視角的圖(item-item圖、item-shop圖、shop-shop圖等)增強(qiáng)item表征,用于item召回。
          論文:arxiv.org/abs/2005.1011

          4. Handling Information Loss of Graph Neural Networks for Session-based Recommendation

          5. Interactive Path Reasoning on Graph for Conversational Recommendation

          論文:arxiv.org/abs/2007.0019

          6. A Dual Heterogeneous Graph Attention Network to Improve Long-Tail Performance for Shop Search in E-Commerce 【阿里】

          7. Gemini: A Novel and Universal Heterogeneous Graph Information Fusing Framework for Online Recommendations 【滴滴】

          Conversational Recommendation

          1. Evaluating Conversational Recommender Systems via User Simulation

          論文:arxiv.org/abs/2006.0873

          2. Improving Conversational Recommender Systems via Knowledge Graph based Semantic Fusion

          論文:arxiv.org/abs/2007.0403

          3. Interactive Path Reasoning on Graph for Conversational Recommendation

          論文:arxiv.org/abs/2007.0019

          CF and Top-N Recommendation

          1. Dual Channel Hypergraph Collaborative Filtering 【百度】

          筆記:blog.csdn.net/weixin_42

          2. Probabilistic Metric Learning with Adaptive Margin for Top-K Recommendation 【華為諾亞】

          3. Controllable Multi-Interest Framework for Recommendation 【阿里】

          論文:arxiv.org/abs/2005.0934

          4. Embedding-based Retrieval in Facebook Search 【Facebook】

          論文:arxiv.org/abs/2006.1163

          5. On Sampling Top-K Recommendation Evaluation

          Embedding and Representation

          1. Compositional Embeddings Using Complementary Partitions for Memory-Efficient Recommendation Systems 【Facebook】

          論文:arxiv.org/abs/1909.0210

          2. PinnerSage: Multi-Modal User Embedding Framework for Recommendations at Pinterest 【Pinterest】

          論文:arxiv.org/abs/2007.0363

          3. SimClusters: Community-Based Representations for Heterogeneous Recommendations at Twitter 【Twitter】

          4. Time-Aware User Embeddings as a Service 【Yahoo】

          論文:astro.temple.edu/~tuf28

          Sequential Recommendation

          1. Disentangled Self-Supervision in Sequential Recommenders 【阿里】

          論文:http://pengcui.thumedialab.com/papers/Disen...

          2. Handling Information Loss of Graph Neural Networks for Session-based Recommendation

          3. Maximizing Cumulative User Engagement in Sequential Recommendation: An Online Optimization Perspective 【阿里】

          論文:arxiv.org/pdf/2006.0452

          RL for Recommendation

          1. Jointly Learning to Recommend and Advertise 【字節(jié)跳動(dòng)】

          論文:arxiv.org/abs/2003.0009

          2. BLOB: A Probabilistic Model for Recommendation that Combines Organic and Bandit Signals 【Criteo】

          3. Joint Policy-Value Learning for Recommendation 【Criteo】

          論文:researchgate.net/public

          Multi-Task Learning

          1. Privileged Features Distillation at Taobao Recommendations 【阿里】

          論文:arxiv.org/abs/1907.0517

          Transfer Learning

          1. Learning Transferrable Parameters for Long-tailed Sequential User Behavior Modeling 【Salesforce】

          2. Semi-supervised Collaborative Filtering by Text-enhanced Domain Adaptation 【阿里】

          論文:arxiv.org/abs/2007.0708

          AutoML for Recommendation

          1. Neural Input Search for Large Scale Recommendation Models 【Google】

          論文:arxiv.org/abs/1907.0447

          2. Towards Automated Neural Interaction Discovering for Click-Through Rate Prediction 【Facebook】

          論文:arxiv.org/abs/2007.0643

          Federated Learning

          1. FedFast: Going Beyond Average for Faster Training of Federated Recommender Systems

          Evaluation

          1. Counterfactual Evaluation of Slate Recommendations with Sequential Reward Interactions 【Netflix, Spotify】

          論文:arxiv.org/abs/2007.1298

          2. Evaluating Conversational Recommender Systems via User Simulation

          論文:arxiv.org/abs/2006.0873

          3. 【Best Paper Award】On Sampled Metrics for Item Recommendation 【Google】

          4. On Sampling Top-K Recommendation Evaluation

          Debiasing

          1. Debiasing Grid-based Product Search in E-commerce 【Etsy】

          論文:public.asu.edu/~rguo12/

          2. Counterfactual Evaluation of Slate Recommendations with Sequential Reward Interactions 【Netflix, Spotify】

          論文:arxiv.org/abs/2007.1298

          3. Attribute-based Propensity for Unbiased Learning in Recommender Systems: Algorithm and Case Studies 【Google】

          論文:research.google/pubs/pu

          POI Recommendation

          1. Geography-Aware Sequential Location Recommendation 【Microsoft】

          論文:staff.ustc.edu.cn/~lian

          Cold-Start Recommendation

          1. MAMO: Memory-Augmented Meta-Optimization for Cold-start Recommendation

          論文:arxiv.org/abs/2007.0318

          2. Meta-learning on Heterogeneous Information Networks for Cold-start Recommendation

          論文:https://ink.library.smu.edu.sg/cgi/...

          Others

          1. Improving Recommendation Quality in Google Drive 【Google】

          論文:research.google/pubs/pu

          2. Temporal-Contextual Recommendation in Real-Time 【Amazon】

          論文:https://assets.amazon.science/96/71/d1f25754497681133c7aa2b7eb05/temporal-contextual-recommendation-in-real-time.pdf




          閱讀過本文的人還看了以下文章:


          TensorFlow 2.0深度學(xué)習(xí)案例實(shí)戰(zhàn)


          基于40萬表格數(shù)據(jù)集TableBank,用MaskRCNN做表格檢測(cè)


          《基于深度學(xué)習(xí)的自然語言處理》中/英PDF


          Deep Learning 中文版初版-周志華團(tuán)隊(duì)


          【全套視頻課】最全的目標(biāo)檢測(cè)算法系列講解,通俗易懂!


          《美團(tuán)機(jī)器學(xué)習(xí)實(shí)踐》_美團(tuán)算法團(tuán)隊(duì).pdf


          《深度學(xué)習(xí)入門:基于Python的理論與實(shí)現(xiàn)》高清中文PDF+源碼


          特征提取與圖像處理(第二版).pdf


          python就業(yè)班學(xué)習(xí)視頻,從入門到實(shí)戰(zhàn)項(xiàng)目


          2019最新《PyTorch自然語言處理》英、中文版PDF+源碼


          《21個(gè)項(xiàng)目玩轉(zhuǎn)深度學(xué)習(xí):基于TensorFlow的實(shí)踐詳解》完整版PDF+附書代碼


          《深度學(xué)習(xí)之pytorch》pdf+附書源碼


          PyTorch深度學(xué)習(xí)快速實(shí)戰(zhàn)入門《pytorch-handbook》


          【下載】豆瓣評(píng)分8.1,《機(jī)器學(xué)習(xí)實(shí)戰(zhàn):基于Scikit-Learn和TensorFlow》


          《Python數(shù)據(jù)分析與挖掘?qū)崙?zhàn)》PDF+完整源碼


          汽車行業(yè)完整知識(shí)圖譜項(xiàng)目實(shí)戰(zhàn)視頻(全23課)


          李沐大神開源《動(dòng)手學(xué)深度學(xué)習(xí)》,加州伯克利深度學(xué)習(xí)(2019春)教材


          筆記、代碼清晰易懂!李航《統(tǒng)計(jì)學(xué)習(xí)方法》最新資源全套!


          《神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)》最新2018版中英PDF+源碼


          將機(jī)器學(xué)習(xí)模型部署為REST API


          FashionAI服裝屬性標(biāo)簽圖像識(shí)別Top1-5方案分享


          重要開源!CNN-RNN-CTC 實(shí)現(xiàn)手寫漢字識(shí)別


          yolo3 檢測(cè)出圖像中的不規(guī)則漢字


          同樣是機(jī)器學(xué)習(xí)算法工程師,你的面試為什么過不了?


          前海征信大數(shù)據(jù)算法:風(fēng)險(xiǎn)概率預(yù)測(cè)


          【Keras】完整實(shí)現(xiàn)‘交通標(biāo)志’分類、‘票據(jù)’分類兩個(gè)項(xiàng)目,讓你掌握深度學(xué)習(xí)圖像分類


          VGG16遷移學(xué)習(xí),實(shí)現(xiàn)醫(yī)學(xué)圖像識(shí)別分類工程項(xiàng)目


          特征工程(一)


          特征工程(二) :文本數(shù)據(jù)的展開、過濾和分塊


          特征工程(三):特征縮放,從詞袋到 TF-IDF


          特征工程(四): 類別特征


          特征工程(五): PCA 降維


          特征工程(六): 非線性特征提取和模型堆疊


          特征工程(七):圖像特征提取和深度學(xué)習(xí)


          如何利用全新的決策樹集成級(jí)聯(lián)結(jié)構(gòu)gcForest做特征工程并打分?


          Machine Learning Yearning 中文翻譯稿


          螞蟻金服2018秋招-算法工程師(共四面)通過


          全球AI挑戰(zhàn)-場(chǎng)景分類的比賽源碼(多模型融合)


          斯坦福CS230官方指南:CNN、RNN及使用技巧速查(打印收藏)


          python+flask搭建CNN在線識(shí)別手寫中文網(wǎng)站


          中科院Kaggle全球文本匹配競(jìng)賽華人第1名團(tuán)隊(duì)-深度學(xué)習(xí)與特征工程



          不斷更新資源

          深度學(xué)習(xí)、機(jī)器學(xué)習(xí)、數(shù)據(jù)分析、python

           搜索公眾號(hào)添加: datayx  



          機(jī)大數(shù)據(jù)技術(shù)與機(jī)器學(xué)習(xí)工程

           搜索公眾號(hào)添加: datanlp

          長按圖片,識(shí)別二維碼

          瀏覽 83
          點(diǎn)贊
          評(píng)論
          收藏
          分享

          手機(jī)掃一掃分享

          分享
          舉報(bào)
          評(píng)論
          圖片
          表情
          推薦
          點(diǎn)贊
          評(píng)論
          收藏
          分享

          手機(jī)掃一掃分享

          分享
          舉報(bào)
          <kbd id="afajh"><form id="afajh"></form></kbd>
          <strong id="afajh"><dl id="afajh"></dl></strong>
            <del id="afajh"><form id="afajh"></form></del>
                1. <th id="afajh"><progress id="afajh"></progress></th>
                  <b id="afajh"><abbr id="afajh"></abbr></b>
                  <th id="afajh"><progress id="afajh"></progress></th>
                  豆花视频一区二区三区入口 | 亚洲中文在线视频 | 新国产在线观看色情 | 亚洲欧美最大色情网站 | 哪里有毛片 |