<kbd id="afajh"><form id="afajh"></form></kbd>
<strong id="afajh"><dl id="afajh"></dl></strong>
    <del id="afajh"><form id="afajh"></form></del>
        1. <th id="afajh"><progress id="afajh"></progress></th>
          <b id="afajh"><abbr id="afajh"></abbr></b>
          <th id="afajh"><progress id="afajh"></progress></th>

          干貨 | C++ 的性能優(yōu)化

          共 36003字,需瀏覽 73分鐘

           ·

          2021-07-27 14:21

          置頂/星標(biāo)公眾號??,硬核文章第一時間送達(dá)!

          前言

          性能優(yōu)化不管是從方法論還是從實踐上都有很多東西,從 C++ 語言本身入手,介紹一些性能優(yōu)化的方法,希望能做到簡潔實用。

          實例1

          在開始本文的內(nèi)容之前,讓我們看段小程序:

          // 獲取一個整數(shù)對應(yīng)10近制的位數(shù)
          uint32_t digits10_v1(uint64_t v) {
              uint32_t result = 0;
              do {
                  ++result;
                  v /= 10;
              } while (v);
              return result;
          }

          如果要對這段代碼進(jìn)行優(yōu)化,你認(rèn)為瓶頸會是什么呢?代碼 -g -O2 后看一眼匯編:

          Dump of assembler code for function digits10_v1(uint64_t):
          0x00000000004008f0  <digits10_v1(uint64_t)+0>:   mov    %rdi,%rdx
          0x00000000004008f3  <digits10_v1(uint64_t)+3>:   xor    %esi,%esi
          0x00000000004008f5 <digits10_v1(uint64_t)+5>:   mov    $0xcccccccccccccccd,%rcx
          0x00000000004008ff  <digits10_v1(uint64_t)+15>:  nop
          0x0000000000400900  <digits10_v1(uint64_t)+16>:  mov    %rdx,%rax
          0x0000000000400903  <digits10_v1(uint64_t)+19>:  add    $0x1,%esi
          0x0000000000400906  <digits10_v1(uint64_t)+22>:  mul    %rcx
          0x0000000000400909  <digits10_v1(uint64_t)+25>:  shr    $0x3,%rdx
          0x000000000040090d  <digits10_v1(uint64_t)+29>:  test   %rdx,%rdx
          0x0000000000400910  <digits10_v1(uint64_t)+32>:  jne    0x400900 <digits10_v1(uint64_t)+16>
          0x0000000000400912  <digits10_v1(uint64_t)+34>:  mov    %esi,%eax
          0x0000000000400914  <digits10_v1(uint64_t)+36>:  retq

          /*
          注:對于常數(shù)的除法操作,編譯器一般會轉(zhuǎn)換成乘法+移位的方式,即
          a / b = a * (1/b) = a * (2^n / b) * (1 / 2^n)  = a * (2^n / b) >> n.
          這里的n=3, b=10, 2^n/b=4/5,0xcccccccccccccccd是編譯器對4/5的定點算法表示
          */

          指令已經(jīng)很少了,有多少優(yōu)化空間呢?先不著急,看看下面這段代碼

          uint32_t digits10_v2(uint64_t v) {
            uint32_t result = 1;
            for (;;) {
              if (v < 10) return result;
              if (v < 100) return result + 1;
              if (v < 1000) return result + 2;
              if (v < 10000) return result + 3;
              // Skip ahead by 4 orders of magnitude
              v /= 10000U;
              result += 4;
            }
          }

          uint32_t digits10_v3(uint64_t v) {
              if (v < 10) return 1;
              if (v < 100) return 2;
              if (v < 1000) return 3;
              if (v < 1000000000000) {    // 10^12
                  if (v < 100000000) {    // 10^7
                      if (v < 1000000) {  // 10^6
                          if (v < 10000) return 4;
                          return 5 + (v >= 100000); // 10^5
                      }
                      return 7 + (v >= 10000000); // 10^7
                  }
                  if (v < 10000000000) {  // 10^10
                      return 9 + (v >= 1000000000); // 10^9
                  }
                  return 11 + (v >= 100000000000); // 10^11
              }
              return 12 + digits10_v3(v / 1000000000000); // 10^12
          }

          寫了一個小程序,digits10_v2 比 digits10_v1 快了 45%, digits10_v3 比digits10_v1 快了60%+。不難看出測試結(jié)論跟數(shù)據(jù)的取值范圍相關(guān),就本例來說數(shù)值越大,提升越明顯。是什么原因呢?附測試程序:

          int main() {
              srand(100);
              uint64_t digit10_array[ITEM_COUNT];
              for( int i = 0; i < ITEM_COUNT; ++i )
              {
                  digit10_array[i] = rand();
              }

              struct timeval start, end;
          // digits10_v1
              uint64_t sum1 = 0;
              uint64_t time1 = 0;
              gettimeofday(&start,NULL);
              for( int i = 0; i < RUN_TIMES; ++i )
              {
                  sum1 += digits10_v1(digit10_array[i]);
              }
              gettimeofday(&end,NULL);
              time1 = ( end.tv_sec - start.tv_sec ) * 1000 * 1000 +  end.tv_usec - start.tv_usec;

          // digits10_v2
              uint64_t sum2 = 0;
              uint64_t time2 = 0;
              gettimeofday(&start,NULL);
              for( int i = 0; i < RUN_TIMES; ++i )
              {
                  sum2 += digits10_v2(digit10_array[i]);
              }
              gettimeofday(&end,NULL);
              time2 = ( end.tv_sec - start.tv_sec ) * 1000 * 1000 +  end.tv_usec - start.tv_usec;

          // digits10_v3
              uint64_t sum3 = 0;
              uint64_t time3 = 0;
              gettimeofday(&start,NULL);
              for( int i = 0; i < RUN_TIMES; ++i )
              {
                  sum3 += digits10_v3(digit10_array[i]);
              }
              gettimeofday(&end,NULL);
              time3 = ( end.tv_sec - start.tv_sec ) * 1000 * 1000 +  end.tv_usec - start.tv_usec;


              cout << "sum1:" << sum1 << "\t sum2:" << sum2 << "\t sum3:" << sum3 << endl;
              cout << "cost1:" << time1 << "us\t cost2:" << time2 << "us\t cost3:" << time3 << "us"
                   << "\t cost2/cost1:" << (1.0*time2)/time1
                   << "\t cost3/cost1:" << (1.0*time3)/time1 << endl;


              return 0;
          }
          /*

          執(zhí)行結(jié)果:

          g++ -g -O2 cplusplus_optimize.cpp && ./a.out
          sum1:9944152     sum2:9944152    sum3:9944152
          cost1:27560us    cost2:14998us   cost3:10525us   cost2/cost1:0.544194    cost3/cost1:0.381894
          */

          Strength reduction

          優(yōu)化原因不是因為做了循環(huán)展開,而是由于不同指令本身的速度就是不一樣的,比較、整型的加減、位操作速度都是最快的,而除法/取余卻很慢。下面有一個更詳細(xì)的列表,為了更直觀一些,用了clock cycle 來衡量,不過這里的 clock cycle 是個平均值,不同的 CPU 還是稍有差異:

          * comparisons  (1 clock cycle)
          * (u)int add, subtract, bitops, shift (1 clock cycle)
          * floating point add, sub (3~6 clock cycle) 
          * indexed array access (cache effects)
          * (u)int32 mul  (3~4 clock cycle)
          * Floating point mul (4~8 clock cycle)
          * Float Point division, remainder (14~45 clock cycle)
          * (u)int division, remainder (40~80 clock cycle)

          雖然大多數(shù)場景下,數(shù)學(xué)運算都不會有太多性能問題,但相對來說,整型的除法運算還是比較昂貴的。編譯器就會利用這一特點進(jìn)行優(yōu)化,一般稱作 Strength reduction.

          對于前面的例子,核心原因是 digits10_v2 用比較和加法來減少除法 (/=) 操作,digits10_v3 通過搜索的方式進(jìn)一步減少了除法操作。由于 cpu 并行處理技術(shù),我們不能簡單的用后面的 clock cycle 來衡量性能,但不難看出處理器對類型的還是非常敏感的,以整型和浮點的處理為例:

          整型

          類型轉(zhuǎn)換

          • int--> short/char (0~1 clock cycle)
          • int --> float/double (4~16個clock cycle), signed int 快于 unsigned int,唯一一個場景 signed 比 unsigned 快的
          • short/char 的計算通常使用 32bit 存儲,只是返回的時候做了截取,故只在要考慮內(nèi)存大小的時候才使用 short/char,如 array
          • 注:隱式類型轉(zhuǎn)換可能會溢出,有符號的溢出變成負(fù)數(shù),無符號的溢出變成小的整數(shù)

          運算

          • 除法、取余運算unsigned int 快于 signed int
          • 除以常量比除以變量效率高,因為可以在編譯期做優(yōu)化,尤其是常量可以表示成2^n時
          • ++i和i++本身性能一樣,但不同的語境效果不一樣,如array[i++]比arry[++i]性能好;當(dāng)依賴自增結(jié)果時,++i性能更好,如a=++b,a和b可復(fù)用同一個寄存器

          代碼示例

          // div和mod效率
          int a, b, c;
          a = b / c; // This is slow
          a = b / 10; // Division by a constant is faster
          a = (unsigned int)b / 10; // Still faster if unsigned
          a = b / 16; // Faster if divisor is a power of 2
          a = (unsigned int)b / 16; // Still faster if unsigned

          浮點

          • 單精度、雙精度的計算性能是一樣的
          • 常量的默認(rèn)精度是雙精度
          • 不要混淆單精度、雙精度,混合精度計算會帶來額外的精度轉(zhuǎn)換開銷,如
          // 混用
          float a, b;
          a = b * 1.2; // bad. 先將b轉(zhuǎn)換成double,返回結(jié)果轉(zhuǎn)回成float
          // Example 14.18b
          float a, b;
          a = b * 1.2f; // ok. everything is float
          // Example 14.18c
          double a, b;
          a = b * 1.2; // ok. everything is double
          • 浮點除法比乘法慢很多,故可以利用乘法來加快速度,如:
          double y, a1, a2, b1, b2;
          y = a1/b1 + a2/b2;  // slow
          double y, a1, a2, b1, b2;
          y = (a1*b2 + a2*b1) / (b1*b2); // faster

          這里介紹的大多是編譯器的擅長但又不能直接優(yōu)化的場景,也是平常優(yōu)化中比較容易忽視的點,其實往往我們往前多走一步,編譯器就可以工作得更好。

          實例2

          先看一個數(shù)字轉(zhuǎn)字符串的例子,stringstream 和 sprintf 自然不會是我們考慮的對象,雖然 protobuf 庫中的 FastInt32ToBuffer 很不錯,其實還能優(yōu)化,下面的版本就比例子中 stringstream 快 6 倍,代碼如下:

          // integer to string
          uint32_t u64ToAscii_v1(uint64_t value, char* dst) {
              // Write backwards.
              char* start = dst;
              do {
                  *dst++ = '0' + (value % 10);
                  value /= 10;
              } while (value != 0);
              const uint32_t result = dst - start;
              // Reverse in place.
              for (dst--; dst > start; start++, dst--) {
                  std::iter_swap(dst, start);
              }
              return result;
          }

          不用細(xì)讀 stringstream/sprintf 的源碼,反匯編看下就能知道個大概,對于轉(zhuǎn)字符串這個場景,stringstream/sprintf 就太重了,通常來說越少的指令性能也越好,本文討論的重點是內(nèi)存訪問,就上面這段代碼,有什么內(nèi)存使用上的問題?如何進(jìn)一步優(yōu)化?

          分析

          優(yōu)化前還是得找一下性能熱點,下面是 vtune 結(jié)果的截圖(雖然 cpu time 和匯編指令的消耗對應(yīng)得不是特別好):

          vtune_1
          vtune_2

          數(shù)組 reverse 的開銷跟上面生成數(shù)組元素相近,reverse有這么耗時么?

          從圖中的匯編可以看出,一次 swap 對應(yīng)著兩次內(nèi)存讀 (movzxb)、兩次內(nèi)存寫 (movb),因為一次寫就意味著一個讀和一個寫,描述的是內(nèi)存-->cache-->內(nèi)存的過程。

          優(yōu)化

          減少內(nèi)存寫操作 一個很自然的優(yōu)化想法,應(yīng)該盡量避免內(nèi)存寫操作,于是代碼可以進(jìn)一步優(yōu)化,結(jié)合 Strength reduction,代碼如下:

          uint32_t u64ToAscii_v2(uint64_t value, char *dst) {
              const uint32_t result = digits10_v3(value);
              uint32_t pos = result - 1;
              while (value >= 10) {
                  const uint64_t q = value / 10;
                  const uint32_t r = static_cast<uint32_t>(value % 10);
                  dst[pos--] = '0' + r;
                  value = q;
              }
              *dst = static_cast<uint32_t>(value) + '0';
              return result;
          }

          實測發(fā)現(xiàn)新版本比之前版本性能提升了 10%,還有優(yōu)化空間么?答案是,有。方案是:通過查表,一次處理2個數(shù)字,減少數(shù)據(jù)依賴,如:

          uint32_t u64ToAscii_v3(uint64_t value, char* dst) {
              static const char digits[] =
                  "0001020304050607080910111213141516171819"
                  "2021222324252627282930313233343536373839"
                  "4041424344454647484950515253545556575859"
                  "6061626364656667686970717273747576777879"
                  "8081828384858687888990919293949596979899";

              const size_t length = digits10_v3(value);
              uint32_t next = length - 1;

              while (value >= 100) {
                  const uint32_t i = (value % 100) * 2;
                  value /= 100;
                  dst[next - 1] = digits[i];
                  dst[next] = digits[i + 1];
                  next -= 2;
              }
              // Handle last 1-2 digits
              if (value < 10) {
                  dst[next] = '0' + uint32_t(value);
              } else {
                  uint32_t i = uint32_t(value) * 2;
                  dst[next - 1] = digits[i];
                  dst[next] = digits[i + 1];
              }
              return length;
          }

          結(jié)論:

          • u64ToAscii_v3性能比基準(zhǔn)版本提升了30%;
          • 如果用到悟時的那個測試場景,性能可以提升6.5倍。

          下面是完整的測試代碼和結(jié)果:

          #include <sys/time.h>
          #include <iostream>

          #define ITEM_COUNT 1024*1024
          #define RUN_TIMES 1024*1024
          #define BUFFERSIZE 32

          using namespace std;

          uint32_t digits10_v1(uint64_t v) {
              uint32_t result = 0;
              do {
                  ++result;
                  v /= 10;
              } while (v);
              return result;
          }


          uint32_t digits10_v2(uint64_t v) {
              uint32_t result = 1;
              for(;;) {
                  if (v < 10) return result;
                  if (v < 100) return result + 1;
                  if (v < 1000) return result + 2;
                  if (v < 10000) return result + 3;
                  v /= 10000U;
                  result += 4;
              }
              return result;
          }

          uint32_t digits10_v3(uint64_t v) {
              if (v < 10) return 1;
              if (v < 100) return 2;
              if (v < 1000) return 3;
              if (v < 1000000000000) {    // 10^12
                  if (v < 100000000) {    // 10^7
                      if (v < 1000000) {  // 10^6
                          if (v < 10000) return 4;
                          return 5 + (v >= 100000); // 10^5
                      }
                      return 7 + (v >= 10000000); // 10^7
                  }
                  if (v < 10000000000) {  // 10^10
                      return 9 + (v >= 1000000000); // 10^9
                  }
                  return 11 + (v >= 100000000000); // 10^11
              }
              return 12 + digits10_v3(v / 1000000000000); // 10^12
          }
          uint32_t u64ToAscii_v1(uint64_t value, char* dst) {
              // Write backwards.
              char* start = dst;
              do {
                  *dst++ = '0' + (value % 10);
                  value /= 10;
              } while (value != 0);
              const uint32_t result = dst - start;
              // Reverse in place.
              for (dst--; dst > start; start++, dst--) {
                  std::iter_swap(dst, start);
              }
              return result;
          }


          uint32_t u64ToAscii_v2(uint64_t value, char *dst) {
              const uint32_t result = digits10_v3(value);
              uint32_t pos = result - 1;
              while (value >= 10) {
                  const uint64_t q = value / 10;
                  const uint32_t r = static_cast<uint32_t>(value % 10);
                  dst[pos--] = '0' + r;
                  value = q;
              }
              *dst = static_cast<uint32_t>(value) + '0';
              return result;
          }

          uint32_t u64ToAscii_v3(uint64_t value, char* dst) {
              static const char digits[] =
                  "0001020304050607080910111213141516171819"
                  "2021222324252627282930313233343536373839"
                  "4041424344454647484950515253545556575859"
                  "6061626364656667686970717273747576777879"
                  "8081828384858687888990919293949596979899";

              const size_t length = digits10_v3(value);
              uint32_t next = length - 1;

              while (value >= 100) {
                  const uint32_t i = (value % 100) * 2;
                  value /= 100;
                  dst[next - 1] = digits[i];
                  dst[next] = digits[i + 1];
                  next -= 2;
              }
              // Handle last 1-2 digits
              if (value < 10) {
                  dst[next] = '0' + uint32_t(value);
              } else {
                  uint32_t i = uint32_t(value) * 2;
                  dst[next - 1] = digits[i];
                  dst[next] = digits[i + 1];
              }
              return length;
          }

          int main() {
              srand(100);
              uint64_t digit10_array[ITEM_COUNT];
              for( int i = 0; i < ITEM_COUNT; ++i )
              {
                  digit10_array[i] = rand();
              }

              char buffer[BUFFERSIZE];
              struct timeval start, end;
          // digits10_v1
              uint64_t sum1 = 0;
              uint64_t time1 = 0;
              gettimeofday(&start,NULL);
              for( int i = 0; i < RUN_TIMES; ++i )
              {
                  sum1 += u64ToAscii_v1(digit10_array[i], buffer);
              }
              gettimeofday(&end,NULL);
              time1 = ( end.tv_sec - start.tv_sec ) * 1000 * 1000 +  end.tv_usec - start.tv_usec;

          // digits10_v2
              uint64_t sum2 = 0;
              uint64_t time2 = 0;
              gettimeofday(&start,NULL);
              for( int i = 0; i < RUN_TIMES; ++i )
              {
                  sum2 += u64ToAscii_v2(digit10_array[i], buffer);
              }
              gettimeofday(&end,NULL);
              time2 = ( end.tv_sec - start.tv_sec ) * 1000 * 1000 +  end.tv_usec - start.tv_usec;

          // digits10_v3
              uint64_t sum3 = 0;
              uint64_t time3 = 0;
              gettimeofday(&start,NULL);
              for( int i = 0; i < RUN_TIMES; ++i )
              {
                  sum3 += u64ToAscii_v3(digit10_array[i], buffer);
              }
              gettimeofday(&end,NULL);
              time3 = ( end.tv_sec - start.tv_sec ) * 1000 * 1000 +  end.tv_usec - start.tv_usec;


              cout << "sum1:" << sum1 << "\t sum2:" << sum2 << "\t sum3:" << sum3 << endl;
              cout << "cost1:" << time1 << "us\t cost2:" << time2 << "us\t cost3:" << time3 << "us"
                   << "\t cost2/cost1:" << (1.0*time2)/time1
                   << "\t cost3/cost1:" << (1.0*time3)/time1 << endl;


              return 0;
          }

          /* 測試結(jié)果
           g++ -g -O2 cplusplus_optimize.cpp -o cplusplus_optimize && ./cplusplus_optimize
          sum1:9944152     sum2:9944152    sum3:9944152
          cost1:47305us    cost2:42448us   cost3:31657us   cost2/cost1:0.897326    cost3/cost1:0.66921
          */ 

          看到優(yōu)化寫內(nèi)存操作的威力了吧,讓我們再看一個減少寫操作的例子:

          struct Bitfield {
          int a:4;
          int b:2;
          int c:2;
          };
          Bitfield x;
          int A, B, C;
          x.a = A;
          x.b = B;
          x.c = C;

          假定 A、B、C 都很小,且不會溢出,可以寫成

          union Bitfield {
          struct {
          int a:4;
          int b:2;
          int c:2;
          };
          char abc;
          };
          Bitfield x;
          int A, B, C;
          x.abc = A | (B << 4) | (C << 6);

          如果需要考慮溢出,也可以改為

          x.abc = (A & 0x0F) | ((B & 3) << 4) | ((C & 3) <<6 );

          讀取效率

          對于內(nèi)存的寫,最好的辦法就是減少寫的次數(shù),那么內(nèi)存的讀取呢?教科書的答案是:盡可能順序訪問內(nèi)存。理解這句話還是得從 cache line 開始,因為實際的 cpu 比較復(fù)雜,下面的表述嘗試做些簡化,如有問題,歡迎指正:

          cache line

          • 假設(shè) L1cache 大小為 8K,cache line 64 字節(jié)、4way,那么整個 cache 會分成32 個集合, 81024/64=128=324,一個內(nèi)存地址進(jìn)入哪個 cache line 不是任意的,而是確定在某個集合中,可以通過公式 (set ) = (memory address) / ( line size) % (number of sets )來計算,如地址是 10000,則(set)=10000/64%32 = 28, 即編號為28的集合內(nèi)的4個 cache line 之一。
          • 用 16 進(jìn)制來描述,10000=0x2710 ,一次內(nèi)存讀取是 64bytes,那么訪問內(nèi)存地址 10000 即意味著地址 0x2700~0x273F 都進(jìn)集合編號為 28(0x1C) 的 cache line 中了。

          cache miss

          可以看出,順序的訪問內(nèi)存是能夠比較高效而且不會因為 cache 沖突,導(dǎo)致藥頻繁讀取內(nèi)存。那什么的情況會導(dǎo)致 cache miss 呢?

          • 當(dāng)某個集合內(nèi)的 cache line 都有數(shù)據(jù)時,且該集合內(nèi)有新的數(shù)據(jù)就會導(dǎo)致老數(shù)據(jù)的換出,進(jìn)而訪問老數(shù)據(jù)就會出現(xiàn) cache miss。
          • 以先后讀取 0x2710, 0x2F00, 0x3700, 0x3F00, 0x4700 為例, 這幾個地址都在 28 這個編號的集合內(nèi),當(dāng)去讀 0x4700 時,假定 CPU 都是以先進(jìn)先出策略,那么 0x2710 就會被換出,這時候如果再訪問 0x2700~0x273F 的數(shù)據(jù)就 cache miss,需要重新訪問內(nèi)存了。
          • 可以看出變量是否有 cache 競爭,得看變量地址間的距離,distance = (number of sets ) (line size) = ( total cache size) / ( number of ways) , 即距離為3264 = 8K/4= 2K的內(nèi)存訪問都可能產(chǎn)生競爭。
          • 上面這些不光對變量、對象有用,對代碼 cache 也是如此。

          建議

          對于內(nèi)存的訪問,可以考慮以下一些建議:

          • 一起使用的函數(shù)存儲在一起。函數(shù)的存儲通常按照源碼中的順序來的,如果函數(shù)A,B,C是一起調(diào)用的,那盡量讓ABC的聲明也是這個順序
          • 一起使用的變量存儲在一起。使用結(jié)構(gòu)體、對象來定義變量,并通過局部變量方式來聲明,都是一些較好的選擇。例子見后文:
          • 合理使用對齊(attribute((aligned(64)))、預(yù)取(prefecting data),讓一個cacheline能獲取到更多有效的數(shù)據(jù)
          • 動態(tài)內(nèi)存分配、STL容器、string都是一些常容易cache不友好的場景,核心代碼處盡量不用
          int Func(int);
          const int size = 1024;
          int a[size], b[size], i;
          ...
          for (i = 0; i < size; i++) {
          b[i] = Func(a[i]);
          }
          // pack a,b to Sab 
          int Func(int);
          const int size = 1024;
          struct Sab {int a; int b;};
          Sab ab[size];
          int i;
          ...
          for (i = 0; i < size; i++) {
          ab[i].b = Func(ab[i].a);
          }

          靜態(tài)變量

          讓我們再回到最前面的優(yōu)化,u64ToAscii_v3 引入了局部靜態(tài)變量 (digits),是否合適?通常來說,要具體問題具體分析,沒有標(biāo)準(zhǔn)答案。

          靜態(tài)變量和棧地址是分開的,可能會帶來 cache miss 的問題,通過去掉 static 修飾符,直接在棧上聲明變的方式可以避免,但這種做法可行有幾個前提條件:

          • 變量大小是要限制的,不超出cache的大小(最好是L1 cache)
          • 變量的初始化在棧上完成,故最好不要在循環(huán)內(nèi)部定義,以避免不必要的初始化。

          其實內(nèi)存訪問和 CPU 運算是沒有一定的贏家,真正做優(yōu)化時,需要結(jié)合具體的場景,仔細(xì)測量才能得到答案。

          回顧

          前面兩個實例分別從編譯器和內(nèi)存使用的角度介紹了一些性能優(yōu)化的方法,后面內(nèi)容則會回到cpu,從指令并行的角度看看我們常見的邏輯控制有哪些可以優(yōu)化的點。

          從原理上來說,這個系列的優(yōu)化不是特別區(qū)分語言,只是這里我們用C++來描述。

          流水線

          通常一個 CPU 可以并行執(zhí)行多條指令,如:4 條浮點乘法,等待 4 個內(nèi)存訪問、一個還為到來的分支比較,不同的運算單元也是可以并行計算,如 for(int i = 0; i < N; ++i) a[i]=0.2; 這里的 i < N 和 ++i 在 a[i]=0.2 可以同時執(zhí)行。提升指令并行能力,往往就能達(dá)到提升性能的目的。

          從流水線的角度看,指令 pipeline 的幾個階段:fetch、decode、execute、memory-access、write-back,除了存儲器的訪問效率會影響并行度外,下一條指令的 fetch/decode 也很關(guān)鍵,而跳轉(zhuǎn)和分支則是又一個攔路虎,這也是本文接下去要主要分析的地方。

          函數(shù)

          本身開銷

          • 函數(shù)調(diào)用使得處理器跳到另外一個代碼地址并回來,一般需要4 clock cycles,大多數(shù)情況處理器會把函數(shù)調(diào)用、返回和其他指令一起執(zhí)行以節(jié)約時間。
          • 函數(shù)參數(shù)存儲在棧上需要額外的時間( 包括棧幀的建立、saving and restoring registers、可能還有異常信息)。在64bit linux上,前6個整型參數(shù)(包括指針、引用)、前8個浮點參數(shù)會放到寄存器中;64bit windows上不管整型、浮點,會放置4個參數(shù)。
          • 在內(nèi)存中過于分散的代碼可能會導(dǎo)致較差的code cache

          常見的優(yōu)化手段

          • 避免不必要的函數(shù),特別在最底層的循環(huán),應(yīng)該盡量讓代碼在一個函數(shù)內(nèi)。看起來與良好的編碼習(xí)慣沖突(一個函數(shù)最好不要超過80行),其實不然,跟這個系列其他優(yōu)化一樣,我們應(yīng)該知道何時去使用這些優(yōu)化,而不是一上來就讓代碼不可讀。
          • 嘗試使用inline函數(shù),讓函數(shù)調(diào)用的地方直接用函數(shù)體替換。inline對編譯器來說是個建議,而且不是inline了性能就好,一般當(dāng)函數(shù)比較小或者只有一個地方調(diào)用的時候,inline效果會比較好
          • 在函數(shù)內(nèi)部使用循環(huán)(e.g., change for(i=0;i<100;i++) DoSomething(); into DoSomething() { for(i=0;i<100;i++) { ... } } )
          • 減少函數(shù)的間接調(diào)用,如偏向靜態(tài)鏈接而不是動態(tài)鏈接,盡量少用或者不用多繼承、虛擬繼承
          • 優(yōu)先使用迭代而不是遞歸
          • 使用函數(shù)來替換define,從而避免多次求值。宏的其他缺點:不能overload和限制作用域(undef除外)
          // Use macro as inline function
          #define MAX(a,b) ((a) > (b) ? (a) : (b))
          y = MAX(f(x), g(x));

          // Replace macro by template
          template <typename T>
          static inline T max(T const & a, T const & b) {
          return a > b ? a : b;
          }

          分支預(yù)測

          應(yīng)用場景

          常見的分支預(yù)測場景有 if/else,for/while,switch,預(yù)測正確 0~2 clock cycles,錯誤恢復(fù) 12~25 clock cycles。

          一般應(yīng)用分支預(yù)測的正確率在90%以上,但個位數(shù)的誤判率對有較多分支的程序來說影響還是非常大的。分支預(yù)測的技術(shù)(或者說策略)非常多,這里不會展開介紹,對寫程序來說,我們知道越簡單的場景越容易預(yù)測正確:如分支都在在一個循環(huán)內(nèi)或者幾乎沒有其他分支。

          關(guān)鍵因素

          如果對分支預(yù)測的概念和作用還不清楚的話,可以看看后面的參考文檔。幾個影響分支預(yù)測因素:

          branch target buffer (BTB)

          • 分支預(yù)測的結(jié)果存儲一個特殊的cache,該cache是個固定大小的hashtable,通過$pc可以計算出預(yù)測結(jié)果地址
          • 在指令fetch階段訪問,使得分支目標(biāo)地址在IF階段就可以讀取.預(yù)測不正確時更新預(yù)測結(jié)果

          Return Address Stack (RAS)

          • 固定大小,操作方式跟stack結(jié)構(gòu)一樣,內(nèi)容是函數(shù)返回值地址($pc+4), 使用BTB存儲
          • 間接的跳轉(zhuǎn)不便于預(yù)測,如依賴寄存器、內(nèi)存地址,好在絕大多數(shù)間接的跳轉(zhuǎn)都來自函數(shù)返回
          • 函數(shù)返回地址預(yù)測使用BTB,如果關(guān)鍵部分的函數(shù)和分支較多,會引起B(yǎng)TB的競爭,進(jìn)而影響分支命中率

          常見的優(yōu)化手段

          1. 消除條件分支

          • 代碼實例
          if (a < b) {
            r = c;
          else {
            r = d;
          }
          • 優(yōu)化版本1
          int mask = (a-b) >> 31;
          r = (mask & c) | (~mask & d);
          • 優(yōu)化版本2
          int mask = (a-b) >> 31;
          r = d + mask & (c-d);
          • 優(yōu)化版本3
          // cmovg版本
          r = (a < b) ?c : d;

          bool 類型變換

          • 實例代碼
          bool a, b, c, d;
          c = a && b;
          d = a || b;
          • 編譯器的行為是
          bool a, b, c, d;
          if (a != 0) {
              if (b != 0) {
                  c = 1;
              }
              else {
                  goto CFALSE;
              }
          }
          else {
          CFALSE:
              c = 0;
          }
          if (a == 0) {
              if (b == 0) {
                  d = 0;
              }
              else {
                  goto DTRUE;
              }
          }
          else {
          DTRUE:
              d = 1;
          }
          • 優(yōu)化版本
          char a = 0, b = 0, c, d;
          c = a & b;
          d = a | b;
          • 實例代碼2
          bool a, b;
          b = !a;
          // 優(yōu)化成
          char a = 0, b;
          b = a ^ 1;
          • 反例

          a && b 何時不能轉(zhuǎn)換成 a & b,當(dāng) a 不可能為 false 的情況下

          a | | b 何時不能轉(zhuǎn)換成 a | b,當(dāng) a 不可能為 true 的情況下

          2. 循環(huán)展開

          • 實例代碼
          int i;
          for (i = 0; i < 20; i++) {
              if (i % 2 == 0) {
                  FuncA(i);
              }
              else {
                  FuncB(i);
              }
              FuncC(i);
          }
          • 優(yōu)化版本
          int i;
          for (i = 0; i < 20; i += 2) {
              FuncA(i);
              FuncC(i);
              FuncB(i+1);
              Func

          C(i+1); }

          • 優(yōu)化說明

          • 優(yōu)點:減少比較次數(shù)、某些CPU上重復(fù)次數(shù)越少預(yù)測越準(zhǔn)、去掉了if判斷

          • 缺點:需要更多的code cache or micro-op cache、有些處理器(core 2)對于小循環(huán)性能很好(小于65bytes code)、循環(huán)的次數(shù)和展開的個數(shù)不匹配

          • 一般編譯器會自動展開循環(huán),程序員不需要主動去做,除非有一些明顯優(yōu)點,比如減少上面的if判斷

          3. 邊界檢查

          • 實例代碼1
          const int size = 16; int i;
          float list[size];
          ...
          if (i < 0 || i >= size) {
              cout << "Error: Index out of range";
          }
          else {
              list[i] += 1.0f;
          }

          // 優(yōu)化版本

          if ((unsigned int)i >= (unsigned int)size) {
              cout << "Error: Index out of range";
          }else {
              list[i] += 1.0f;
          }
          • 實例代碼2
          const int min = 100, max = 110; int i;
          ...
          if (i >= min && i <= max) { ...

          //優(yōu)化版本

          if ((unsigned int)(i - min) <= (unsigned int)(max - min)) { ...

          4. 使用數(shù)組

          • 實例代碼1
          float a; int b;
          a = (b == 0) ? 1.0f : 2.5f;

          // 使用靜態(tài)數(shù)組
          float a; int b;
          static const float OneOrTwo5[2] = {1.0f, 2.5f};
          a = OneOrTwo5[b & 1];
          • 實例代碼2
          // 數(shù)組的長度是2的冪
          float list[16]; int i;
          ...
          list[i & 15] += 1.0f;

          5. 整形的 bit array 語義,適用于 enum、const、define

          enum Weekdays {
              Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday
          };
          Weekdays Day;
          if (Day == Tuesday || Day == Wednesday || Day == Friday) {
              DoThisThreeTimesAWeek();
          }

          // 優(yōu)化版本 using &
          enum Weekdays {
              Sunday = 1, Monday = 2, Tuesday = 4, Wednesday = 8,
              Thursday = 0x10, Friday = 0x20, Saturday = 0x40
          };
          Weekdays Day;
          if (Day & (Tuesday | Wednesday | Friday)) {
              DoThisThreeTimesAWeek();
          }

          本塊小結(jié)

          • 盡可能的減少跳轉(zhuǎn)和分支
          • 優(yōu)先使用迭代而不是遞歸
          • 對于長的if...else,使用switch case,以減少后面條件的判斷,把最容易出現(xiàn)的條件放在最前面
          • 為小函數(shù)使用inline,減少函數(shù)調(diào)用開銷
          • 在函數(shù)內(nèi)使用循環(huán)
          • 在跳轉(zhuǎn)之間的代碼盡量減少數(shù)據(jù)依賴
          • 嘗試展開循環(huán)
          • 嘗試通過計算來消除分支

          鏈接 | https://developer.aliyun.com/article/412574?utm_source=wechat_session&utm_medium=social&utm_oi=887018450961186816

          往期推薦




          專輯 | 趣味設(shè)計模式
          專輯 | 音視頻開發(fā)
          專輯 | C++ 進(jìn)階
          專輯 | 超硬核 Qt
          專輯 | 玩轉(zhuǎn) Linux
          專輯 | GitHub 開源推薦
          專輯 | 程序人生


          關(guān)注公眾「高效程序員」??一起優(yōu)秀!

          回復(fù)“1024”,送你一份程序員大禮包。

          瀏覽 113
          點贊
          評論
          收藏
          分享

          手機(jī)掃一掃分享

          分享
          舉報
          評論
          圖片
          表情
          推薦
          點贊
          評論
          收藏
          分享

          手機(jī)掃一掃分享

          分享
          舉報
          <kbd id="afajh"><form id="afajh"></form></kbd>
          <strong id="afajh"><dl id="afajh"></dl></strong>
            <del id="afajh"><form id="afajh"></form></del>
                1. <th id="afajh"><progress id="afajh"></progress></th>
                  <b id="afajh"><abbr id="afajh"></abbr></b>
                  <th id="afajh"><progress id="afajh"></progress></th>
                  啪啪男女国产 | 中文字幕人妻无码蜜桃 | 亚洲无码一区在线 | 午夜人妖另类 | 无码一级日韩免费 |