ONNX > CoreML > TFLite" />
<kbd id="afajh"><form id="afajh"></form></kbd>
<strong id="afajh"><dl id="afajh"></dl></strong>
    <del id="afajh"><form id="afajh"></form></del>
        1. <th id="afajh"><progress id="afajh"></progress></th>
          <b id="afajh"><abbr id="afajh"></abbr></b>
          <th id="afajh"><progress id="afajh"></progress></th>

          yolov3YOLOv3 in PyTorch > ONNX > CoreML > TFLite

          聯(lián)合創(chuàng)作 · 2023-09-26 02:42

           

          This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices evolved over thousands of hours of training and evolution on anonymized client datasets. All code and models are under active development, and are subject to modification or deletion without notice. Use at your own risk.

          YOLOv5-P5 640 Figure (click to expand)

          Figure Notes (click to expand)
          • GPU Speed measures end-to-end time per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size 32, and includes image preprocessing, PyTorch FP16 inference, postprocessing and NMS.
          • EfficientDet data from google/automl at batch size 8.
          • Reproduce by python test.py --task study --data coco.yaml --iou 0.7 --weights yolov3.pt yolov3-spp.pt yolov3-tiny.pt yolov5l.pt

          Branch Notice

          The ultralytics/yolov3 repository is now divided into two branches:

          $ git clone https://github.com/ultralytics/yolov3  # master branch (default)
          $ git clone https://github.com/ultralytics/yolov3 -b archive  # archive branch

          Pretrained Checkpoints

          Model size
          (pixels)
          mAPval
          0.5:0.95
          mAPtest
          0.5:0.95
          mAPval
          0.5
          Speed
          V100 (ms)
          params
          (M)
          FLOPS
          640 (B)
          YOLOv3-tiny 640 17.6 17.6 34.8 1.2 8.8 13.2
          YOLOv3 640 43.3 43.3 63.0 4.1 61.9 156.3
          YOLOv3-SPP 640 44.3 44.3 64.6 4.1 63.0 157.1
          YOLOv5l 640 48.2 48.2 66.9 3.7 47.0 115.4
          Table Notes (click to expand)
          • APtest denotes COCO test-dev2017 server results, all other AP results denote val2017 accuracy.
          • AP values are for single-model single-scale unless otherwise noted. Reproduce mAP by python test.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65
          • SpeedGPU averaged over 5000 COCO val2017 images using a GCP n1-standard-16 V100 instance, and includes FP16 inference, postprocessing and NMS. Reproduce speed by python test.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45
          • All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).

          Requirements

          Python 3.8 or later with all requirements.txt dependencies installed, including torch>=1.7. To install run:

          $ pip install -r requirements.txt

          Tutorials

          Environments

          YOLOv3 may be run in any of the following up-to-date verified environments (with all dependencies including CUDA/CUDNN, Python and PyTorch preinstalled):

          Inference

          detect.py runs inference on a variety of sources, downloading models automatically from the latest YOLOv3 release and saving results to runs/detect.

          $ python detect.py --source 0  # webcam
                                      file.jpg  # image 
                                      file.mp4  # video
                                      path/  # directory
                                      path/*.jpg  # glob
                                      'https://youtu.be/NUsoVlDFqZg'  # YouTube video
                                      'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream

          To run inference on example images in data/images:

          $ python detect.py --source data/images --weights yolov3.pt --conf 0.25

          PyTorch Hub

          To run batched inference with YOLOv3 and PyTorch Hub:

          import torch
          
          # Model
          model = torch.hub.load('ultralytics/yolov3', 'yolov3')  # or 'yolov3_spp', 'yolov3_tiny'
          
          # Image
          img = 'https://ultralytics.com/images/zidane.jpg'
          
          # Inference
          results = model(img)
          results.print()  # or .show(), .save()

          Training

          Run commands below to reproduce results on COCO dataset (dataset auto-downloads on first use). Training times for YOLOv3/YOLOv3-SPP/YOLOv3-tiny are 6/6/2 days on a single V100 (multi-GPU times faster). Use the largest --batch-size your GPU allows (batch sizes shown for 16 GB devices).

          $ python train.py --data coco.yaml --cfg yolov3.yaml      --weights '' --batch-size 24
                                                   yolov3-spp.yaml                            24
                                                   yolov3-tiny.yaml                           64

          Citation

          DOI

          About Us

          Ultralytics is a U.S.-based particle physics and AI startup with over 6 years of expertise supporting government, academic and business clients. We offer a wide range of vision AI services, spanning from simple expert advice up to delivery of fully customized, end-to-end production solutions, including:

          • Cloud-based AI systems operating on hundreds of HD video streams in realtime.
          • Edge AI integrated into custom iOS and Android apps for realtime 30 FPS video inference.
          • Custom data training, hyperparameter evolution, and model exportation to any destination.

          For business inquiries and professional support requests please visit us at https://ultralytics.com.

          Contact

          Issues should be raised directly in the repository. For business inquiries or professional support requests please visit https://ultralytics.com or email Glenn Jocher at [email protected].

          瀏覽 28
          點(diǎn)贊
          評論
          收藏
          分享

          手機(jī)掃一掃分享

          編輯 分享
          舉報(bào)
          評論
          圖片
          表情
          推薦
          點(diǎn)贊
          評論
          收藏
          分享

          手機(jī)掃一掃分享

          編輯 分享
          舉報(bào)
          <kbd id="afajh"><form id="afajh"></form></kbd>
          <strong id="afajh"><dl id="afajh"></dl></strong>
            <del id="afajh"><form id="afajh"></form></del>
                1. <th id="afajh"><progress id="afajh"></progress></th>
                  <b id="afajh"><abbr id="afajh"></abbr></b>
                  <th id="afajh"><progress id="afajh"></progress></th>
                  思瑞土豪视频大全 | 亚洲无码在线直播 | 久久精品无码电影 | 国产婷婷激情综合 | 国产精品久久久久久久毛片明星 |