<kbd id="afajh"><form id="afajh"></form></kbd>
<strong id="afajh"><dl id="afajh"></dl></strong>
    <del id="afajh"><form id="afajh"></form></del>
        1. <th id="afajh"><progress id="afajh"></progress></th>
          <b id="afajh"><abbr id="afajh"></abbr></b>
          <th id="afajh"><progress id="afajh"></progress></th>

          yolov5模型集成

          共 5679字,需瀏覽 12分鐘

           ·

          2021-08-22 16:47

          在你開(kāi)始前

          克隆這個(gè) repo 并安裝requirements.txt依賴項(xiàng),包括Python>=3.8PyTorch>=1.7

          git clone https://github.com/ultralytics/yolov5 # clone repo
          cd yolov5
          pip install -r requirements.txt # install requirements.txt

          正常測(cè)試

          在集成之前,我們要建立單個(gè)模型的基線性能。此命令在 COCO val2017 上以 640 像素的圖像大小測(cè)試 YOLOv5x。yolov5x.pt是可用的最大和最準(zhǔn)確的模型。其他選項(xiàng)是yolov5s.ptyolov5m.ptand yolov5l.pt, 或者您擁有訓(xùn)練自定義數(shù)據(jù)集的檢查點(diǎn)./weights/best.pt有關(guān)所有可用模型的詳細(xì)信息,請(qǐng)參閱我們的自述文件

          $ python test.py --weights yolov5x.pt --data coco.yaml --img 640

          輸出:

          Namespace(augment=False, batch_size=32, conf_thres=0.001, data='./data/coco.yaml', device='', img_size=640, iou_thres=0.65, save_json=True, save_txt=False, single_cls=False, task='val', verbose=False, weights=['yolov5x.pt'])
          Using CUDA device0 _CudaDeviceProperties(name='Tesla P100-PCIE-16GB', total_memory=16280MB)

          Fusing layers... Model Summary: 284 layers, 8.89222e+07 parameters, 0 gradients
          Scanning labels ../coco/labels/val2017.cache (4952 found, 0 missing, 48 empty, 0 duplicate, for 5000 images): 5000it [00:00, 17761.74it/s]
          Class Images Targets P R [email protected] [email protected]:.95: 100% 157/157 [02:34<00:00, 1.02it/s]
          all 5e+03 3.63e+04 0.409 0.754 0.669 0.476
          Speed: 23.6/1.6/25.2 ms inference/NMS/total per 640x640 image at batch-size 32

          COCO mAP with pycocotools... saving detections_val2017__results.json...
          Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.492 < ---------- baseline mAP
          Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.676
          Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.534
          Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.318
          Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.541
          Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.633
          Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.376
          Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.616
          Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.670
          Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.493
          Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.723
          Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.812

          集成測(cè)試

          通過(guò)簡(jiǎn)單地將額外的模型附加到--weights任何現(xiàn)有 test.py 或 detect.py 命令中參數(shù),可以在測(cè)試和推理時(shí)將多個(gè)預(yù)訓(xùn)練模型集成在一起這個(gè)例子測(cè)試了 2 個(gè)模型的集合:- YOLOv5x - YOLOv5l

          $ python test.py --weights yolov5x.pt yolov5l.pt --data coco.yaml --img 640

          輸出:

          Namespace(augment=False, batch_size=32, conf_thres=0.001, data='./data/coco.yaml', device='', img_size=640, iou_thres=0.65, save_json=True, save_txt=False, single_cls=False, task='val', verbose=False, weights=['yolov5x.pt', 'yolov5l.pt'])
          Using CUDA device0 _CudaDeviceProperties(name='Tesla P100-PCIE-16GB', total_memory=16280MB)

          Fusing layers... Model Summary: 284 layers, 8.89222e+07 parameters, 0 gradients # Model 1
          Fusing layers... Model Summary: 236 layers, 4.77901e+07 parameters, 0 gradients # Model 2
          Ensemble created with ['yolov5x.pt', 'yolov5l.pt'] # Ensemble Notice

          Scanning labels ../coco/labels/val2017.cache (4952 found, 0 missing, 48 empty, 0 duplicate, for 5000 images): 5000it [00:00, 17883.26it/s]
          Class Images Targets P R [email protected] [email protected]:.95: 100% 157/157 [03:42<00:00, 1.42s/it]
          all 5e+03 3.63e+04 0.402 0.764 0.677 0.48
          Speed: 37.5/1.4/38.9 ms inference/NMS/total per 640x640 image at batch-size 32

          COCO mAP with pycocotools... saving detections_val2017__results.json...
          Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.496 < ---------- improved mAP
          Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.684
          Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.538
          Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.323
          Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.548
          Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.633
          Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.377
          Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.615
          Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.670
          Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.495
          Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.723
          Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.815

          集成推理

          將額外的模型附加到--weights參數(shù)以運(yùn)行集成推理:

          $ python detect.py --weights yolov5x.pt yolov5l.pt --img 640 --source ./inference/images/

          輸出:

          Namespace(agnostic_nms=False, augment=False, classes=None, conf_thres=0.25, device='', img_size=640, iou_thres=0.45, output='inference/output', save_txt=False, source='./inference/images/', update=False, view_img=False, weights=['yolov5x.pt', 'yolov5l.pt'])
          Using CUDA device0 _CudaDeviceProperties(name='Tesla P100-PCIE-16GB', total_memory=16280MB)

          Fusing layers... Model Summary: 284 layers, 8.89222e+07 parameters, 0 gradients # Model 1
          Fusing layers... Model Summary: 236 layers, 4.77901e+07 parameters, 0 gradients # Model 2
          Ensemble created with ['yolov5x.pt', 'yolov5l.pt'] # Ensemble Notice

          image 1/2 inference/images/bus.jpg: 640x512 4 persons, 1 bicycles, 1 buss, Done. (0.073s)
          image 2/2 inference/images/zidane.jpg: 384x640 3 persons, 3 ties, Done. (0.063s)
          Results saved to inference/output
          Done. (0.319s)


          瀏覽 177
          點(diǎn)贊
          評(píng)論
          收藏
          分享

          手機(jī)掃一掃分享

          分享
          舉報(bào)
          評(píng)論
          圖片
          表情
          推薦
          點(diǎn)贊
          評(píng)論
          收藏
          分享

          手機(jī)掃一掃分享

          分享
          舉報(bào)
          <kbd id="afajh"><form id="afajh"></form></kbd>
          <strong id="afajh"><dl id="afajh"></dl></strong>
            <del id="afajh"><form id="afajh"></form></del>
                1. <th id="afajh"><progress id="afajh"></progress></th>
                  <b id="afajh"><abbr id="afajh"></abbr></b>
                  <th id="afajh"><progress id="afajh"></progress></th>
                  美国一级A片在线 | 操B视频网址 | 亚洲手机在线免费视频 | 69成人在线电影 | 最新中文字幕MV第三季歌词 |