<kbd id="afajh"><form id="afajh"></form></kbd>
<strong id="afajh"><dl id="afajh"></dl></strong>
    <del id="afajh"><form id="afajh"></form></del>
        1. <th id="afajh"><progress id="afajh"></progress></th>
          <b id="afajh"><abbr id="afajh"></abbr></b>
          <th id="afajh"><progress id="afajh"></progress></th>

          各機器學習領域綜述清單!

          共 11394字,需瀏覽 23分鐘

           ·

          2023-11-11 10:22

          點擊上方小白學視覺”,選擇加"星標"或“置頂

          重磅干貨,第一時間送達


          前言

           

          一個『機器學習領域綜述大列表』,涵蓋了自然語言處理、推薦系統(tǒng)、計算機視覺、深度學習、強化學習等主題。另外發(fā)現(xiàn)源repo中NLP相關的綜述不是很多,于是把一些覺得還不錯的文章添加進去了,重新整理更新在 AI-Surveys 中。

          作者丨kaiyuan 轉載自 | NewBeeNLP


          • ml-surveys: https://github.com/eugeneyan/ml-surveys

          • AI-Surveys: https://github.com/KaiyuanGao/AI-Surveys


          『收藏等于看完』系列,來看看都有哪些吧, enjoy!

          自然語言處理

          • 深度學習:Recent Trends in Deep Learning Based Natural Language Processing[2]

          • 文本分類:Deep Learning Based Text Classification: A Comprehensive Review[3]

          • 文本生成:Survey of the SOTA in Natural Language Generation: Core tasks, applications and evaluation[4]

          • 文本生成:Neural Language Generation: Formulation, Methods, and Evaluation[5]

          • 遷移學習:Exploring Transfer Learning with T5: the Text-To-Text Transfer Transformer[6] (Paper[7])

          • 遷移學習:Neural Transfer Learning for Natural Language Processing[8]

          • 知識圖譜:A Survey on Knowledge Graphs: Representation, Acquisition and Applications[9]

          • 命名實體識別:A Survey on Deep Learning for Named Entity Recognition[10]

          • 關系抽取:More Data, More Relations, More Context and More Openness: A Review and Outlook for Relation Extraction[11]

          • 情感分析:Deep Learning for Sentiment Analysis : A Survey[12]

          • ABSA情感分析:Deep Learning for Aspect-Level Sentiment Classification: Survey, Vision, and Challenges[13]

          • 文本匹配:Neural Network Models for Paraphrase Identification, Semantic Textual Similarity, Natural Language Inference, and Question Answering[14]

          • 閱讀理解:Neural Reading Comprehension And Beyond[15]

          • 閱讀理解:Neural Machine Reading Comprehension: Methods and Trends[16]

          • 機器翻譯:Neural Machine Translation: A Review[17]

          • 機器翻譯:A Survey of Domain Adaptation for Neural Machine Translation[18]

          • 預訓練模型:Pre-trained Models for Natural Language Processing: A Survey[19]

          • 注意力機制:An Attentive Survey of Attention Models[20]

          • 注意力機制:An Introductory Survey on Attention Mechanisms in NLP Problems[21]

          • 注意力機制:Attention in Natural Language Processing[22]

          • BERT:A Primer in BERTology: What we know about how BERT works[23]

          • Beyond Accuracy: Behavioral Testing of NLP Models with CheckList[24]

          • Evaluation of Text Generation: A Survey[25]

          推薦系統(tǒng)

          • Recommender systems survey[26]

          • Deep Learning based Recommender System: A Survey and New Perspectives[27]

          • Are We Really Making Progress? A Worrying Analysis of Neural Recommendation Approaches[28]

          • A Survey of Serendipity in Recommender Systems[29]

          • Diversity in Recommender Systems – A survey[30]

          • A Survey of Explanations in Recommender Systems[31]

          深度學習

          • A State-of-the-Art Survey on Deep Learning Theory and Architectures[32]

          • 知識蒸餾:Knowledge Distillation: A Survey[33]

          • 模型壓縮:Compression of Deep Learning Models for Text: A Survey[34]

          • 遷移學習:A Survey on Deep Transfer Learning[35]

          • 神經架構搜索:A Comprehensive Survey of Neural Architecture Search-- Challenges and Solutions[36]

          • 神經架構搜索:Neural Architecture Search: A Survey[37]

          計算機視覺

          • 目標檢測:Object Detection in 20 Years[38]

          • 對抗性攻擊:Threat of Adversarial Attacks on Deep Learning in Computer Vision[39]

          • 自動駕駛:Computer Vision for Autonomous Vehicles: Problems, Datasets and State of the Art[40]

          強化學習

          • A Brief Survey of Deep Reinforcement Learning[41]

          • Transfer Learning for Reinforcement Learning Domains[42]

          • Review of Deep Reinforcement Learning Methods and Applications in Economics[43]

          Embeddings

          • 圖:A Comprehensive Survey of Graph Embedding: Problems, Techniques and Applications[44]

          • 文本:From Word to Sense Embeddings:A Survey on Vector Representations of Meaning[45]

          • 文本:Diachronic Word Embeddings and Semantic Shifts[46]

          • 文本:Word Embeddings: A Survey[47]

          • A Survey on Contextual Embeddings[48]

          Meta-learning & Few-shot Learning

          • A Survey on Knowledge Graphs: Representation, Acquisition and Applications[49]

          • Meta-learning for Few-shot Natural Language Processing: A Survey[50]

          • Learning from Few Samples: A Survey[51]

          • Meta-Learning in Neural Networks: A Survey[52]

          • A Comprehensive Overview and Survey of Recent Advances in Meta-Learning[53]

          • Baby steps towards few-shot learning with multiple semantics[54]

          • Meta-Learning: A Survey[55]

          • A Perspective View And Survey Of Meta-learning[56]

          其他

          • A Survey on Transfer Learning[57]

          本文參考文獻

          [1]AI-Surveys: https://github.com/KaiyuanGao/AI-Surveys

          [2]Recent Trends in Deep Learning Based Natural Language Processing: https://arxiv.org/pdf/1708.02709.pdf

          [3]Deep Learning Based Text Classification: A Comprehensive Review: https://arxiv.org/pdf/2004.03705

          [4]Survey of the SOTA in Natural Language Generation: Core tasks, applications and evaluation: https://www.jair.org/index.php/jair/article/view/11173/26378

          [5]Neural Language Generation: Formulation, Methods, and Evaluation: https://arxiv.org/pdf/2007.15780.pdf

          [6]Exploring Transfer Learning with T5: the Text-To-Text Transfer Transformer: https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html

          [7]Paper: https://arxiv.org/abs/1910.10683

          [8]Neural Transfer Learning for Natural Language Processing: https://aran.library.nuigalway.ie/handle/10379/15463

          [9]A Survey on Knowledge Graphs: Representation, Acquisition and Applications: https://arxiv.org/abs/2002.00388

          [10]A Survey on Deep Learning for Named Entity Recognition: https://arxiv.org/abs/1812.09449

          [11]More Data, More Relations, More Context and More Openness: A Review and Outlook for Relation Extraction: https://arxiv.org/abs/2004.03186

          [12]Deep Learning for Sentiment Analysis : A Survey: https://arxiv.org/abs/1801.07883

          [13]Deep Learning for Aspect-Level Sentiment Classification: Survey, Vision, and Challenges: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8726353

          [14]Neural Network Models for Paraphrase Identification, Semantic Textual Similarity, Natural Language Inference, and Question Answering: https://www.aclweb.org/anthology/C18-1328/

          [15]Neural Reading Comprehension And Beyond: https://stacks.stanford.edu/file/druid:gd576xb1833/thesis-augmented.pdf

          [16]Neural Machine Reading Comprehension: Methods and Trends: https://arxiv.org/abs/1907.01118

          [17]Neural Machine Translation: A Review: https://arxiv.org/abs/1912.02047

          [18]A Survey of Domain Adaptation for Neural Machine Translation: https://www.aclweb.org/anthology/C18-1111.pdf

          [19]Pre-trained Models for Natural Language Processing: A Survey: https://arxiv.org/abs/2003.08271

          [20]An Attentive Survey of Attention Models: https://arxiv.org/pdf/1904.02874.pdf

          [21]An Introductory Survey on Attention Mechanisms in NLP Problems: https://arxiv.org/abs/1811.05544

          [22]Attention in Natural Language Processing: https://arxiv.org/abs/1902.02181

          [23]A Primer in BERTology: What we know about how BERT works: https://arxiv.org/pdf/2002.12327.pdf

          [24]Beyond Accuracy: Behavioral Testing of NLP Models with CheckList: https://arxiv.org/pdf/2005.04118.pdf

          [25]Evaluation of Text Generation: A Survey: https://arxiv.org/pdf/2006.14799.pdf

          [26]Recommender systems survey: http://irntez.ir/wp-content/uploads/2016/12/sciencedirec.pdf

          [27]Deep Learning based Recommender System: A Survey and New Perspectives: https://arxiv.org/pdf/1707.07435.pdf

          [28]Are We Really Making Progress? A Worrying Analysis of Neural Recommendation Approaches: https://arxiv.org/pdf/1907.06902.pdf

          [29]A Survey of Serendipity in Recommender Systems: https://www.researchgate.net/publication/306075233_A_Survey_of_Serendipity_in_Recommender_Systems

          [30]Diversity in Recommender Systems – A survey: https://papers-gamma.link/static/memory/pdfs/153-Kunaver_Diversity_in_Recommender_Systems_2017.pdf

          [31]A Survey of Explanations in Recommender Systems: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.418.9237&rep=rep1&type=pdf

          [32]A State-of-the-Art Survey on Deep Learning Theory and Architectures: https://www.mdpi.com/2079-9292/8/3/292/htm

          [33]Knowledge Distillation: A Survey: https://arxiv.org/pdf/2006.05525.pdf

          [34]Compression of Deep Learning Models for Text: A Survey: https://arxiv.org/pdf/2008.05221.pdf

          [35]A Survey on Deep Transfer Learning: https://arxiv.org/pdf/1808.01974.pdf

          [36]A Comprehensive Survey of Neural Architecture Search-- Challenges and Solutions: https://arxiv.org/abs/2006.02903

          [37]Neural Architecture Search: A Survey: https://arxiv.org/abs/1808.05377

          [38]Object Detection in 20 Years: https://arxiv.org/pdf/1905.05055.pdf

          [39]Threat of Adversarial Attacks on Deep Learning in Computer Vision: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8294186

          [40]Computer Vision for Autonomous Vehicles: Problems, Datasets and State of the Art: https://arxiv.org/pdf/1704.05519.pdf

          [41]A Brief Survey of Deep Reinforcement Learning: https://arxiv.org/pdf/1708.05866.pdf

          [42]Transfer Learning for Reinforcement Learning Domains: http://www.jmlr.org/papers/volume10/taylor09a/taylor09a.pdf

          [43]Review of Deep Reinforcement Learning Methods and Applications in Economics: https://arxiv.org/pdf/2004.01509.pdf

          [44]A Comprehensive Survey of Graph Embedding: Problems, Techniques and Applications: https://arxiv.org/pdf/1709.07604

          [45]From Word to Sense Embeddings:A Survey on Vector Representations of Meaning: https://www.jair.org/index.php/jair/article/view/11259/26454

          [46]Diachronic Word Embeddings and Semantic Shifts: https://arxiv.org/pdf/1806.03537.pdf

          [47]Word Embeddings: A Survey: https://arxiv.org/abs/1901.09069

          [48]A Survey on Contextual Embeddings: https://arxiv.org/abs/2003.07278

          [49]A Survey on Knowledge Graphs: Representation, Acquisition and Applications: https://arxiv.org/abs/2002.00388

          [50]Meta-learning for Few-shot Natural Language Processing: A Survey: https://arxiv.org/abs/2007.09604

          [51]Learning from Few Samples: A Survey: https://arxiv.org/abs/2007.15484

          [52]Meta-Learning in Neural Networks: A Survey: https://arxiv.org/abs/2004.05439

          [53]A Comprehensive Overview and Survey of Recent Advances in Meta-Learning: https://arxiv.org/abs/2004.11149

          [54]Baby steps towards few-shot learning with multiple semantics: https://arxiv.org/abs/1906.01905

          [55]Meta-Learning: A Survey: https://arxiv.org/abs/1810.03548

          [56]A Perspective View And Survey Of Meta-learning: https://www.researchgate.net/publication/2375370_A_Perspective_View_And_Survey_Of_Meta-Learning

          [57]A Survey on Transfer Learning: http://202.120.39.19:40222/wp-content/uploads/2018/03/A-Survey-on-Transfer-Learning.pdf

             
             
          下載1:OpenCV-Contrib擴展模塊中文版教程
          在「小白學視覺」公眾號后臺回復:擴展模塊中文教程即可下載全網第一份OpenCV擴展模塊教程中文版,涵蓋擴展模塊安裝、SFM算法、立體視覺、目標跟蹤、生物視覺、超分辨率處理等二十多章內容。

          下載2:Python視覺實戰(zhàn)項目52講
          小白學視覺公眾號后臺回復:Python視覺實戰(zhàn)項目即可下載包括圖像分割、口罩檢測、車道線檢測、車輛計數(shù)、添加眼線、車牌識別、字符識別、情緒檢測、文本內容提取、面部識別等31個視覺實戰(zhàn)項目,助力快速學校計算機視覺。

          下載3:OpenCV實戰(zhàn)項目20講
          小白學視覺公眾號后臺回復:OpenCV實戰(zhàn)項目20講即可下載含有20個基于OpenCV實現(xiàn)20個實戰(zhàn)項目,實現(xiàn)OpenCV學習進階。

          交流群


          歡迎加入公眾號讀者群一起和同行交流,目前有SLAM、三維視覺、傳感器自動駕駛、計算攝影、檢測、分割、識別、醫(yī)學影像、GAN算法競賽等微信群(以后會逐漸細分),請掃描下面微信號加群,備注:”昵稱+學校/公司+研究方向“,例如:”張三 + 上海交大 + 視覺SLAM“。請按照格式備注,否則不予通過。添加成功后會根據(jù)研究方向邀請進入相關微信群。請勿在群內發(fā)送廣告,否則會請出群,謝謝理解~


          瀏覽 602
          點贊
          評論
          收藏
          分享

          手機掃一掃分享

          分享
          舉報
          評論
          圖片
          表情
          推薦
          點贊
          評論
          收藏
          分享

          手機掃一掃分享

          分享
          舉報
          <kbd id="afajh"><form id="afajh"></form></kbd>
          <strong id="afajh"><dl id="afajh"></dl></strong>
            <del id="afajh"><form id="afajh"></form></del>
                1. <th id="afajh"><progress id="afajh"></progress></th>
                  <b id="afajh"><abbr id="afajh"></abbr></b>
                  <th id="afajh"><progress id="afajh"></progress></th>
                  蜜臀尤物一区二区三区直播 | 狼友在线观看视频 | 天天爱天天干天天谢 | 天天干天天射综合网 | 伊人网站在线观看 |