<kbd id="afajh"><form id="afajh"></form></kbd>
<strong id="afajh"><dl id="afajh"></dl></strong>
    <del id="afajh"><form id="afajh"></form></del>
        1. <th id="afajh"><progress id="afajh"></progress></th>
          <b id="afajh"><abbr id="afajh"></abbr></b>
          <th id="afajh"><progress id="afajh"></progress></th>

          Yann LeCun主講!紐約大學(xué)《深度學(xué)習(xí)》2021課程全部放出,附slides與視頻

          共 2155字,需瀏覽 5分鐘

           ·

          2021-11-18 11:31

          來(lái)源:專知

          本文附課程,建議閱讀5分鐘?

          Yann LeCun在紐約大學(xué)數(shù)據(jù)科學(xué)中心(CDS)主講的《深度學(xué)習(xí)》2021年春季課程現(xiàn)已全部在線可看!


          該課程自2021年春季開(kāi)始由Yann LeCun與Alfredo Canziani等共同執(zhí)教。


          CDS發(fā)布了Yann LeCun的深度學(xué)習(xí)(DS-GA 1008)課程的所有材料,包括帶英文字幕教學(xué)視頻、書(shū)面講義、課件以及帶有PyTorch實(shí)現(xiàn)的可執(zhí)行Jupyter Notebooks。

          課程關(guān)注深度學(xué)習(xí)和表示學(xué)習(xí)的最新技術(shù),重點(diǎn)關(guān)注有監(jiān)督和無(wú)監(jiān)督深度學(xué)習(xí)、嵌入方法、度量學(xué)習(xí)、卷積和循環(huán)網(wǎng),以及在計(jì)算機(jī)視覺(jué)、自然語(yǔ)言理解和語(yǔ)音識(shí)別方面的應(yīng)用。前提條件包括:DS-GA 1001數(shù)據(jù)科學(xué)入門(mén)或研究生水平的機(jī)器學(xué)習(xí)課程。

          地址:
          https://cds.nyu.edu/deep-learning/

          資源
          • YouTube視頻:
            https://www.youtube.com/watch?v=mTtDfKgLm54
          • 官方中文版講義:
            https://atcold.github.io/pytorch-Deep-Learning/zh/
          • 課件:
            https://github.com/Atcold/NYU-DLSP21
          • GitHub:
            hhttps://atcold.github.io/NYU-DLSP21/
          • Reddit論壇:
            https://www.reddit.com/r/NYU_DeepLearning/

          授課老師:


          目錄內(nèi)容:

          Theme 1: Introduction

          • History and resources??????

          • Gradient descent and the backpropagation algorithm??????

          • Neural nets inference??????

          • Modules and architectures???

          • Neural nets training???????????

          • Homework 1: backprop

          Theme 2: Parameters sharing

          • Recurrent and convolutional nets?????????

          • ConvNets in practice?????????

          • Natural signals properties and the convolution?????????

          • Recurrent neural networks, vanilla and gated (LSTM)???????????

          • Homework 2: RNN & CNN

          Theme 3: Energy based models, foundations

          • Energy based models (I)??????

          • Inference for LV-EBMs??????

          • What are EBMs good for????

          • Energy based models (II)?????????

          • Training LV-EBMs??????

          • Homework 3: structured prediction

          Theme 4: Energy based models, advanced

          • Energy based models (III)??????

          • Unsup learning and autoencoders??????

          • Energy based models (VI)??????

          • From LV-EBM to target prop to (any) autoencoder??????

          • Energy based models (V)??????

          • AEs with PyTorch and GANs???????????

          Theme 5: Associative memories

          • Energy based models (V)??????

          • Attention & transformer?????????

          Theme 6: Graphs

          • Graph transformer nets?[A][B]??????

          • Graph convolutional nets (I) [from last year]??????

          • Graph convolutional nets (II)?????????

          Theme 7: Control

          1. Planning and control??????

          2. The Truck Backer-Upper?????????

          3. Prediction and Planning Under Uncertainty??????

          Theme 8: Optimisation

          • Optimisation (I) [from last year]??????

          • Optimisation (II)?????????

          Miscellaneous

          • SSL for vision?[A][B]??????

          • Low resource machine translation?[A][B]??????

          • Lagrangian backprop, final project, and Q&A?????????


          深度學(xué)習(xí)概要


          瀏覽 92
          點(diǎn)贊
          評(píng)論
          收藏
          分享

          手機(jī)掃一掃分享

          分享
          舉報(bào)
          評(píng)論
          圖片
          表情
          推薦
          點(diǎn)贊
          評(píng)論
          收藏
          分享

          手機(jī)掃一掃分享

          分享
          舉報(bào)
          <kbd id="afajh"><form id="afajh"></form></kbd>
          <strong id="afajh"><dl id="afajh"></dl></strong>
            <del id="afajh"><form id="afajh"></form></del>
                1. <th id="afajh"><progress id="afajh"></progress></th>
                  <b id="afajh"><abbr id="afajh"></abbr></b>
                  <th id="afajh"><progress id="afajh"></progress></th>
                  人人玩人人草 | 99在线精品视频 | 国产青草视频在线观看 | 99色精品视频 | 天天爱天天日天天干 |