量化分析預(yù)測股市?試試這個 Python 庫

!pip install quandl!pip install fbprophet!pip install plotly
from stocker importStocker現(xiàn)在在 Python 代碼中有 Stocker 類,我們可以使用它來創(chuàng)建該類的實例。在 Python 中,類的實例稱為對象,創(chuàng)建對象的行為有時稱為實例化或構(gòu)造。為了創(chuàng)建 Stocker 對象,我們需要傳入有效股票代碼的名稱。
# MSFT Stocker Initialized. Data covers 1986-03-13 to 2018-01-16.microsoft = Stocker('MSFT')
MSFT StockerInitialized. Data covers 1986-03-1300:00:00 to 2018-03-2700:00:00.microsoft?對象。Stocker 建立在?quandl WIKI?數(shù)據(jù)庫上,該數(shù)據(jù)庫使我們可以訪問 3000 多只美國股票以及多年的每日價格數(shù)據(jù)(完整列表)。對于此示例,我們將堅持使用 Microsoft 數(shù)據(jù)。因為微軟正在擁抱開源社區(qū)(包括 Python)。# Stock is an attribute of the microsoft objectstock_history = microsoft.stockstock_history.head()
# A method (function) requires parenthesesmicrosoft.plot_stock()
MaximumAdj. Close= 96.77 on 2018-03-1200:00:00.MinimumAdj. Close= 0.06 on 1986-03-2400:00:00.CurrentAdj. Close= 89.47 on 2018-03-2700:00:00.

plot_stock?函數(shù)有許多可選參數(shù)。默認(rèn)情況下,此方法繪制整個日期范圍的調(diào)整后收盤價,但我們可以選擇范圍、要繪制的統(tǒng)計數(shù)據(jù)以及繪圖類型。例如,如果我們想將價格的每日變化與調(diào)整后的交易量(股票數(shù)量)進行比較,我們可以在函數(shù)調(diào)用中指定這些。microsoft.plot_stock(start_date = '2000-01-03', end_date = '2018-01-16', stats = ['Daily Change', 'Adj. Volume'], plot_type='pct')MaximumDailyChange= 2.08 on 2008-10-1300:00:00.MinimumDailyChange= -3.34 on 2017-12-0400:00:00.CurrentDailyChange= -5.47 on 2018-03-2700:00:00.MaximumAdj. Volume= 591052200.00 on 2006-04-2800:00:00.MinimumAdj. Volume= 7425503.00 on 2017-11-2400:00:00.CurrentAdj. Volume= 53704562.00 on 2018-03-2700:00:00.

plot_stock,我們可以調(diào)查任何日期范圍內(nèi)數(shù)據(jù)中的任何數(shù)量,并尋找與現(xiàn)實世界事件的相關(guān)性。現(xiàn)在,我們將繼續(xù)討論 Stocker 中更有趣的部分之一:賺假錢!microsoft.buy_and_hold(start_date='1986-03-13', end_date='2018-01-16', nshares=100)MSFT Total buy and hold profit from1986-03-13 to 2018-01-16for100 shares = $8829.11
model, model_data = microsoft.create_prophet_model()
model.plot_components(model_data)plt.show()

weekly_seasonality?屬性將其添加到先知模型中:print(microsoft.weekly_seasonality)microsoft.weekly_seasonality = Trueprint(microsoft.weekly_seasonality)
FalseTrue
weekly_seasonality?的默認(rèn)值為?False,但我們更改了該值以在我們的模型中包含每周模式。然后我們再次調(diào)用?create_prophet_model?并繪制結(jié)果組件。microsoft.changepoint_date_analysis()Changepoints sorted by slope rate of change (2nd derivative):DateAdj. Close delta4102016-09-0855.811396-1.3780933382016-05-2650.1134531.1167202172015-12-0252.572008-0.8823594582016-11-1557.5898190.603127482015-04-0237.6125900.442776

microsoft.changepoint_date_analysis(search = 'Microsoft profit')TopRelatedQueries:query value0 microsoft non profit 1001 microsoft office 602 apple profit 403 microsoft 365404 apple 35RisingRelatedQueries:query value0 apple stock 1701 microsoft 3651302 apple profit 50

“Microsoft profit”與微軟股價之間似乎沒有相關(guān)性。microsoft.changepoint_date_analysis(search = 'Microsoft Office')TopRelatedQueries:query value0 microsoft office download 1001 microsoft office 2010902 office 2010853 microsoft office 2013754 office 201370RisingRelatedQueries:query value0 microsoft office 2016 key 803001 office 2016732002 download microsoft office 2016721503 microsoft office 2016 mac 693504 microsoft office 201667650

Microsoft Office?的搜索量下降會導(dǎo)致股價上漲。也許有人應(yīng)該讓微軟知道。model, future = microsoft.create_prophet_model(days=180)PredictedPrice on 2018-07-21= $102.40

E?N?D

評論
圖片
表情
