【硬核干貨】數(shù)據(jù)分析哪家強(qiáng)?選Pandas還是選SQL
Pandas和SQL之間語(yǔ)法的差異,相信對(duì)于不少數(shù)據(jù)分析師而言,無(wú)論是Pandas模塊還是SQL,都是日常學(xué)習(xí)工作當(dāng)中用的非常多的工具,當(dāng)然我們也可以在Pandas模塊當(dāng)中來(lái)調(diào)用SQL語(yǔ)句,通過調(diào)用read_sql()方法建立數(shù)據(jù)庫(kù)
首先我們通過SQL語(yǔ)句在新建一個(gè)數(shù)據(jù)庫(kù),基本的語(yǔ)法相信大家肯定都清楚,
CREATE TABLE 表名 (
字段名稱 數(shù)據(jù)類型 ...
)
那么我們來(lái)看一下具體的代碼
import pandas as pd
import sqlite3
connector = sqlite3.connect('public.db')
my_cursor = connector.cursor()
my_cursor.executescript("""
CREATE TABLE sweets_types
(
id integer NOT NULL,
name character varying NOT NULL,
PRIMARY KEY (id)
);
...篇幅有限,詳細(xì)參考源碼...
""")
同時(shí)我們也往這些新建的表格當(dāng)中插入數(shù)據(jù),代碼如下
my_cursor.executescript("""
INSERT INTO sweets_types(name) VALUES
('waffles'),
('candy'),
('marmalade'),
('cookies'),
('chocolate');
...篇幅有限,詳細(xì)參考源碼...
""")
我們可以通過下面的代碼來(lái)查看新建的表格,并且轉(zhuǎn)換成DataFrame格式的數(shù)據(jù)集,代碼如下
df_sweets = pd.read_sql("SELECT * FROM sweets;", connector)
output

df_manufacturers = pd.read_sql("SELECT * FROM manufacturers", connector)
output

加工的數(shù)據(jù)集當(dāng)中則涉及到了工廠的主要負(fù)責(zé)人和聯(lián)系方式,而倉(cāng)儲(chǔ)的數(shù)據(jù)集當(dāng)中則涉及到了倉(cāng)儲(chǔ)的詳細(xì)地址、城市所在地等等
df_storehouses = pd.read_sql("SELECT * FROM storehouses", connector)
output

還有甜品的種類數(shù)據(jù)集,
df_sweets_types = pd.read_sql("SELECT * FROM sweets_types;", connector)
output

數(shù)據(jù)篩查
簡(jiǎn)單條件的篩選
Pandas模塊中的代碼是這個(gè)樣子的# 轉(zhuǎn)換數(shù)據(jù)類型
df_sweets['weight'] = pd.to_numeric(df_sweets['weight'])
# 輸出結(jié)果
df_sweets[df_sweets.weight == 300].name
output
1 Mikus
6 Soucus
11 Macus
Name: name, dtype: object
當(dāng)然我們還可以通過pandas當(dāng)中的read_sql()方法來(lái)調(diào)用SQL語(yǔ)句
pd.read_sql("SELECT name FROM sweets WHERE weight = '300'", connector)
output

我們?cè)賮?lái)看一個(gè)相類似的案例,篩選出成本等于100的甜品名稱,代碼如下
# Pandas
df_sweets['cost'] = pd.to_numeric(df_sweets['cost'])
df_sweets[df_sweets.cost == 100].name
# SQL
pd.read_sql("SELECT name FROM sweets WHERE cost = '100'", connector)
output
Milty
針對(duì)文本型的數(shù)據(jù),我們也可以進(jìn)一步來(lái)篩選出我們想要的數(shù)據(jù),代碼如下
# Pandas
df_sweets[df_sweets.name.str.startswith('M')].name
# SQL
pd.read_sql("SELECT name FROM sweets WHERE name LIKE 'M%'", connector)
output
Milty
Mikus
Mivi
Mi
Misa
Maltik
Macus
當(dāng)然在SQL語(yǔ)句當(dāng)中的通配符,%表示匹配任意數(shù)量的字母,而_表示匹配任意一個(gè)字母,具體的區(qū)別如下
# SQL
pd.read_sql("SELECT name FROM sweets WHERE name LIKE 'M%'", connector)
output

pd.read_sql("SELECT name FROM sweets WHERE name LIKE 'M_'", connector)
output

復(fù)雜條件的篩選
# Pandas
df_sweets[(df_sweets.cost == 150) & (df_sweets.weight == 300)].name
# SQL
pd.read_sql("SELECT name FROM sweets WHERE cost = '150' AND weight = '300'", connector)
output
Mikus
或者是篩選出成本價(jià)控制在200-300之間的甜品名稱,代碼如下
# Pandas
df_sweets[df_sweets['cost'].between(200, 300)].name
# SQL
pd.read_sql("SELECT name FROM sweets WHERE cost BETWEEN '200' AND '300'", connector)
output

要是涉及到排序的問題,在SQL當(dāng)中使用的是ORDER BY語(yǔ)句,代碼如下
# SQL
pd.read_sql("SELECT name FROM sweets ORDER BY id DESC", connector)
output

而在Pandas模塊當(dāng)中調(diào)用的則是sort_values()方法,代碼如下
# Pandas
df_sweets.sort_values(by='id', ascending=False).name
output
11 Macus
10 Maltik
9 Sor
8 Co
7 Soviet
6 Soucus
5 Soltic
4 Misa
3 Mi
2 Mivi
1 Mikus
0 Milty
Name: name, dtype: object
篩選出成本價(jià)最高的甜品名稱,在Pandas模塊當(dāng)中的代碼是這個(gè)樣子的
df_sweets[df_sweets.cost == df_sweets.cost.max()].name
output
11 Macus
Name: name, dtype: object
而在SQL語(yǔ)句當(dāng)中的代碼,我們需要首先篩選出成本最高的是哪個(gè)甜品,然后再進(jìn)行進(jìn)一步的處理,代碼如下
pd.read_sql("SELECT name FROM sweets WHERE cost = (SELECT MAX(cost) FROM sweets)", connector)我們想要看一下是倉(cāng)儲(chǔ)的城市具體是有哪幾個(gè),在Pandas模塊當(dāng)中的代碼是這個(gè)樣子的,通過調(diào)用unique()方法
df_storehouses['city'].unique()
output
array(['Moscow', 'Saint-petersburg', 'Yekaterinburg'], dtype=object)
而在SQL語(yǔ)句當(dāng)中則對(duì)應(yīng)的是DISTINCT關(guān)鍵字
pd.read_sql("SELECT DISTINCT city FROM storehouses", connector)
數(shù)據(jù)分組統(tǒng)計(jì)
在Pandas模塊當(dāng)中分組統(tǒng)計(jì)一般調(diào)用的都是groupby()方法,然后后面再添加一個(gè)統(tǒng)計(jì)函數(shù),例如是求分均值的mean()方法,或者是求和的sum()方法等等,例如我們想要查找出在不止一個(gè)城市生產(chǎn)加工甜品的名稱,代碼如下
df_manufacturers.groupby('name').name.count()[df_manufacturers.groupby('name').name.count() > 1]
output
name
Mishan 2
Name: name, dtype: int64
而在SQL語(yǔ)句當(dāng)中的分組也是GROUP BY,后面要是還有其他條件的話,用的是HAVING關(guān)鍵字,代碼如下
pd.read_sql("""
SELECT name, COUNT(name) as 'name_count' FROM manufacturers
GROUP BY name HAVING COUNT(name) > 1
""", connector)
數(shù)據(jù)合并
當(dāng)兩個(gè)數(shù)據(jù)集或者是多個(gè)數(shù)據(jù)集需要進(jìn)行合并的時(shí)候,在Pandas模塊當(dāng)中,我們可以調(diào)用merge()方法,例如我們將df_sweets數(shù)據(jù)集和df_sweets_types兩數(shù)據(jù)集進(jìn)行合并,其中df_sweets當(dāng)中的sweets_types_id是該表的外鍵
df_sweets.head()
output

df_sweets_types.head()
output

具體數(shù)據(jù)合并的代碼如下所示
df_sweets_1 = df_sweets.merge(df_sweets_types, left_on='sweets_types_id', right_on='id')
output

我們?cè)龠M(jìn)一步的篩選出巧克力口味的甜品,代碼如下
df_sweets_1.query('name_y == "chocolate"').name_x
output
10 Misa
11 Sor
Name: name_x, dtype: object
而SQL語(yǔ)句則顯得比較簡(jiǎn)單了,代碼如下
# SQL
pd.read_sql("""
SELECT sweets.name FROM sweets
JOIN sweets_types ON sweets.sweets_types_id = sweets_types.id
WHERE sweets_types.name = 'chocolate';
""", connector)
output

數(shù)據(jù)集的結(jié)構(gòu)
我們來(lái)查看一下數(shù)據(jù)集的結(jié)構(gòu),在Pandas模塊當(dāng)中直接查看shape屬性即可,代碼如下
df_sweets.shape
output
(12, 10)
而在SQL語(yǔ)句當(dāng)中,則是
pd.read_sql("SELECT count(*) FROM sweets;", connector)
output

往期精彩回顧
適合初學(xué)者入門人工智能的路線及資料下載 (圖文+視頻)機(jī)器學(xué)習(xí)入門系列下載 中國(guó)大學(xué)慕課《機(jī)器學(xué)習(xí)》(黃海廣主講) 機(jī)器學(xué)習(xí)及深度學(xué)習(xí)筆記等資料打印 《統(tǒng)計(jì)學(xué)習(xí)方法》的代碼復(fù)現(xiàn)專輯 機(jī)器學(xué)習(xí)交流qq群955171419,加入微信群請(qǐng)掃碼
