9大主題卷積神經(jīng)網(wǎng)絡(luò)(CNN)的PyTorch實(shí)現(xiàn)

極市導(dǎo)讀
?從R-CNN到Y(jié)OLO v3再到M2Det,近年來(lái)的目標(biāo)檢測(cè)新模型層出不窮,性能也越來(lái)越好。本文介紹了它們的PyTorch實(shí)現(xiàn),目前Github已開(kāi)源,非常實(shí)用。>>就在明天,極市直播:極市直播丨張志鵬:Ocean/Ocean+: 實(shí)時(shí)目標(biāo)跟蹤分割算法,小代價(jià),大增益|ECCV2020

1 典型網(wǎng)絡(luò)(Classical network)


import torchimport torch.nn as nndef Conv3x3BNReLU(in_channels,out_channels,stride,padding=1):return nn.Sequential(nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=stride, padding=1),nn.BatchNorm2d(out_channels),nn.ReLU6(inplace=True))def Conv1x1BNReLU(in_channels,out_channels):return nn.Sequential(nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0),nn.BatchNorm2d(out_channels),nn.ReLU6(inplace=True))def ConvBNReLU(in_channels,out_channels,kernel_size,stride,padding=1):return nn.Sequential(nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding),nn.BatchNorm2d(out_channels),nn.ReLU6(inplace=True))def ConvBN(in_channels,out_channels,kernel_size,stride,padding=1):return nn.Sequential(nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding),nn.BatchNorm2d(out_channels))class ResidualBlock(nn.Module):def __init__(self, in_channels, out_channels):super(ResidualBlock, self).__init__()mid_channels = out_channels//2self.bottleneck = nn.Sequential(ConvBNReLU(in_channels=in_channels, out_channels=mid_channels, kernel_size=1, stride=1),ConvBNReLU(in_channels=mid_channels, out_channels=mid_channels, kernel_size=3, stride=1, padding=1),ConvBNReLU(in_channels=mid_channels, out_channels=out_channels, kernel_size=1, stride=1),)self.shortcut = ConvBNReLU(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1)def forward(self, x):out = self.bottleneck(x)return out+self.shortcut(x)
2?輕量級(jí)網(wǎng)絡(luò)(Lightweight)










7?人體姿態(tài)識(shí)別網(wǎng)絡(luò)(HumanPoseEstimation)

8?注意力機(jī)制網(wǎng)絡(luò)

9 人像分割網(wǎng)絡(luò)(PortraitSegmentation)
推薦閱讀
通道注意力超強(qiáng)改進(jìn),輕量模塊ECANet來(lái)了!即插即用,顯著提高CNN性能|已開(kāi)源 憑什么相信你,我的CNN模型?關(guān)于CNN模型可解釋性的思考 深度學(xué)習(xí)準(zhǔn)「研究僧」預(yù)習(xí)資料:圖靈獎(jiǎng)得主Yann LeCun《深度學(xué)習(xí)(Pytorch)》春季課程

評(píng)論
圖片
表情
