好習(xí)慣!pandas 8 個(gè)常用的 index 設(shè)置

在數(shù)據(jù)處理時(shí),經(jīng)常會(huì)因?yàn)閕ndex報(bào)錯(cuò)而發(fā)愁。不要緊,本次來(lái)和大家聊聊pandas中處理索引的幾種常用方法。
1.讀取時(shí)指定索引列
很多情況下,我們的數(shù)據(jù)源是 CSV 文件。假設(shè)有一個(gè)名為的文件data.csv,包含以下數(shù)據(jù)。
date,temperature,humidity
07/01/21,95,50
07/02/21,94,55
07/03/21,94,56
默認(rèn)情況下,pandas將會(huì)創(chuàng)建一個(gè)從0開(kāi)始的索引行,如下:
>>> pd.read_csv("data.csv", parse_dates=["date"])
date temperature humidity
0 2021-07-01 95 50
1 2021-07-02 94 55
2 2021-07-03 94 56
但是,我們可以在導(dǎo)入過(guò)程中通過(guò)將index_col參數(shù)設(shè)置為某一列可以直接指定索引列。
>>> pd.read_csv("data.csv", parse_dates=["date"], index_col="date")
temperature humidity
date
2021-07-01 95 50
2021-07-02 94 55
2021-07-03 94 56
2. 使用現(xiàn)有的 DataFrame 設(shè)置索引
當(dāng)然,如果已經(jīng)讀取數(shù)據(jù)或做完一些數(shù)據(jù)處理步驟后,我們可以通過(guò)set_index手動(dòng)設(shè)置索引。
>>> df = pd.read_csv("data.csv", parse_dates=["date"])
>>> df.set_index("date")
temperature humidity
date
2021-07-01 95 50
2021-07-02 94 55
2021-07-03 94 56
這里有兩點(diǎn)需要注意下。
set_index方法默認(rèn)將創(chuàng)建一個(gè)新的 DataFrame。如果要就地更改df的索引,需要設(shè)置inplace=True。
df.set_index(“date”, inplace=True)
如果要保留將要被設(shè)置為索引的列,可以設(shè)置 drop=False。
df.set_index(“date”, drop=False)
3. 一些操作后重置索引
在處理 DataFrame 時(shí),某些操作(例如刪除行、索引選擇等)將會(huì)生成原始索引的子集,這樣默認(rèn)的數(shù)字索引排序就亂了。如要重新生成連續(xù)索引,可以使用reset_index方法。
>>> df0 = pd.DataFrame(np.random.rand(5, 3), columns=list("ABC"))
>>> df0
A B C
0 0.548012 0.288583 0.734276
1 0.342895 0.207917 0.995485
2 0.378794 0.160913 0.971951
3 0.039738 0.008414 0.226510
4 0.581093 0.750331 0.133022
>>> df1 = df0[df0.index % 2 == 0]
>>> df1
A B C
0 0.548012 0.288583 0.734276
2 0.378794 0.160913 0.971951
4 0.581093 0.750331 0.133022
>>> df1.reset_index(drop=True)
A B C
0 0.548012 0.288583 0.734276
1 0.378794 0.160913 0.971951
2 0.581093 0.750331 0.133022
通常,我們是不需要保留舊索引的,因此可將drop參數(shù)設(shè)置為True。同樣,如果要就地重置索引,可設(shè)置inplace參數(shù)為True,否則將創(chuàng)建一個(gè)新的 DataFrame。
4. 將索引從 groupby 操作轉(zhuǎn)換為列
groupby分組方法是經(jīng)常用的。比如下面通過(guò)添加一個(gè)分組列team來(lái)進(jìn)行分組。
>>> df0["team"] = ["X", "X", "Y", "Y", "Y"]
>>> df0
A B C team
0 0.548012 0.288583 0.734276 X
1 0.342895 0.207917 0.995485 X
2 0.378794 0.160913 0.971951 Y
3 0.039738 0.008414 0.226510 Y
4 0.581093 0.750331 0.133022 Y
>>> df0.groupby("team").mean()
A B C
team
X 0.445453 0.248250 0.864881
Y 0.333208 0.306553 0.443828
默認(rèn)情況下,分組會(huì)將分組列編程index索引。但是很多情況下,我們不希望分組列變成索引,因?yàn)榭赡苡行┯?jì)算或者判斷邏輯還是需要用到該列的。因此,我們需要設(shè)置一下讓分組列不成為索引,同時(shí)也能完成分組的功能。
有兩種方法可以完成所需的操作,第一種是用reset_index,第二種是在groupby方法里設(shè)置as_index=False。個(gè)人更喜歡第二種方法,它只涉及兩個(gè)步驟,更簡(jiǎn)潔。
>>> df0.groupby("team").mean().reset_index()
team A B C
0 X 0.445453 0.248250 0.864881
1 Y 0.333208 0.306553 0.443828
>>> df0.groupby("team", as_index=False).mean()
team A B C
0 X 0.445453 0.248250 0.864881
1 Y 0.333208 0.306553 0.443828
5.排序后重置索引
當(dāng)用sort_value排序方法時(shí)也會(huì)遇到這個(gè)問(wèn)題,因?yàn)槟J(rèn)情況下,索引index跟著排序順序而變動(dòng),所以是亂雪。如果我們希望索引不跟著排序變動(dòng),同樣需要在sort_values方法中設(shè)置一下參數(shù)ignore_index即可。
>>> df0.sort_values("A")
A B C team
3 0.039738 0.008414 0.226510 Y
1 0.342895 0.207917 0.995485 X
2 0.378794 0.160913 0.971951 Y
0 0.548012 0.288583 0.734276 X
4 0.581093 0.750331 0.133022 Y
>>> df0.sort_values("A", ignore_index=True)
A B C team
0 0.039738 0.008414 0.226510 Y
1 0.342895 0.207917 0.995485 X
2 0.378794 0.160913 0.971951 Y
3 0.548012 0.288583 0.734276 X
4 0.581093 0.750331 0.133022 Y
6.刪除重復(fù)后重置索引
刪除重復(fù)項(xiàng)和排序一樣,默認(rèn)執(zhí)行后也會(huì)打亂排序順序。同理,可以在drop_duplicates方法中設(shè)置ignore_index參數(shù)True即可。
>>> df0
A B C team
0 0.548012 0.288583 0.734276 X
1 0.342895 0.207917 0.995485 X
2 0.378794 0.160913 0.971951 Y
3 0.039738 0.008414 0.226510 Y
4 0.581093 0.750331 0.133022 Y
>>> df0.drop_duplicates("team", ignore_index=True)
A B C team
0 0.548012 0.288583 0.734276 X
1 0.378794 0.160913 0.971951 Y
7. 索引的直接賦值
當(dāng)我們有了一個(gè) DataFrame 時(shí),想要使用不同的數(shù)據(jù)源或單獨(dú)的操作來(lái)分配索引。在這種情況下,可以直接將索引分配給現(xiàn)有的 df.index。
>>> better_index = ["X1", "X2", "Y1", "Y2", "Y3"]
>>> df0.index = better_index
>>> df0
A B C team
X1 0.548012 0.288583 0.734276 X
X2 0.342895 0.207917 0.995485 X
Y1 0.378794 0.160913 0.971951 Y
Y2 0.039738 0.008414 0.226510 Y
Y3 0.581093 0.750331 0.133022 Y
8.寫入CSV文件時(shí)忽略索引
數(shù)據(jù)導(dǎo)出到 CSV 文件時(shí),默認(rèn) DataFrame 具有從 0 開(kāi)始的索引。如果我們不想在導(dǎo)出的 CSV 文件中包含它,可以在to_csv方法中設(shè)置index參數(shù)。
>>> df0.to_csv("exported_file.csv", index=False)
如下所示,導(dǎo)出的 CSV 文件中,索引列未包含在文件中。

其實(shí),很多方法中都有關(guān)于索引的設(shè)置,只不過(guò)大家一般比較關(guān)心數(shù)據(jù),而經(jīng)常忽略了索引,才導(dǎo)致繼續(xù)運(yùn)行時(shí)可能會(huì)報(bào)錯(cuò)。以上幾個(gè)高頻的操作都是有索引設(shè)置的,建議大家平時(shí)用的時(shí)候養(yǎng)成設(shè)置索引的習(xí)慣,這樣會(huì)節(jié)省不少時(shí)間。
原創(chuàng)不易,歡迎點(diǎn)贊、留言、分享,支持我繼續(xù)寫下去。
參考:https://towardsdatascience.com/8-quick-tips-on-manipulating-index-with-pandas-c10ef9d1b44f
福利
入門Python的最強(qiáng)三件套《ThinkPython》、《簡(jiǎn)明Python教程》、《Python進(jìn)階》的PDF電子版已打包提供給大家,關(guān)注下方公眾號(hào),在后臺(tái)回復(fù)關(guān)鍵字「P3」即可獲取。
推薦閱讀:
入門: 最全的零基礎(chǔ)學(xué)Python的問(wèn)題 | 零基礎(chǔ)學(xué)了8個(gè)月的Python | 實(shí)戰(zhàn)項(xiàng)目 |學(xué)Python就是這條捷徑
干貨:爬取豆瓣短評(píng),電影《后來(lái)的我們》 | 38年NBA最佳球員分析 | 從萬(wàn)眾期待到口碑撲街!唐探3令人失望 | 笑看新倚天屠龍記 | 燈謎答題王 |用Python做個(gè)海量小姐姐素描圖 |碟中諜這么火,我用機(jī)器學(xué)習(xí)做個(gè)迷你推薦系統(tǒng)電影
趣味:彈球游戲 | 九宮格 | 漂亮的花 | 兩百行Python《天天酷跑》游戲!
AI: 會(huì)做詩(shī)的機(jī)器人 | 給圖片上色 | 預(yù)測(cè)收入 | 碟中諜這么火,我用機(jī)器學(xué)習(xí)做個(gè)迷你推薦系統(tǒng)電影
小工具: Pdf轉(zhuǎn)Word,輕松搞定表格和水??! | 一鍵把html網(wǎng)頁(yè)保存為pdf!| 再見(jiàn)PDF提取收費(fèi)! | 用90行代碼打造最強(qiáng)PDF轉(zhuǎn)換器,word、PPT、excel、markdown、html一鍵轉(zhuǎn)換 | 制作一款釘釘?shù)蛢r(jià)機(jī)票提示器! |60行代碼做了一個(gè)語(yǔ)音壁紙切換器天天看小姐姐!|
年度爆款文案
點(diǎn)閱讀原文,領(lǐng)AI全套資料!


