(附代碼)干貨 | OpenCV實(shí)現(xiàn)邊緣模板匹配算法
點(diǎn)擊左上方藍(lán)字關(guān)注我們

OpenCV中自帶的模板匹配算法,完全是像素基本的模板匹配,特別容易受到光照影響,光照稍微有所不同,該方法就會(huì)歇菜了!搞得很多OpenCV初學(xué)者剛學(xué)習(xí)到該方法時(shí)候很開心,一用該方法馬上很傷心,悲喜交加,充分感受到了理想與現(xiàn)實(shí)的距離,不過(guò)沒關(guān)系,這里介紹一種新的模板匹配算法,主要是基于圖像邊緣梯度,它對(duì)圖像光照與像素遷移都有很強(qiáng)的抗干擾能力,據(jù)說(shuō)Halcon的模板匹配就是基于此的加速版本,在工業(yè)應(yīng)用場(chǎng)景中已經(jīng)得到廣泛使用。
該算法主要是基于圖像梯度,實(shí)現(xiàn)基于梯度級(jí)別的NCC模板匹配,基于Sobel梯度算子得到dx, dy, magnitude

通過(guò)Canny算法得到邊緣圖像、基于輪廓發(fā)現(xiàn)得到所有的輪廓點(diǎn)集,基于每個(gè)點(diǎn)計(jì)算該點(diǎn)的dx、dy、magnitude(dxy)三個(gè)值。生成模板信息。然后對(duì)輸入的圖像進(jìn)行Sobel梯度圖像之后,根據(jù)模型信息進(jìn)行匹配,這樣的好處有兩個(gè):
梯度對(duì)光照有很強(qiáng)的抗干擾能力,對(duì)模板匹配的抗光照干擾
基于梯度匹配,可以對(duì)目標(biāo)圖像上出現(xiàn)的微小像素遷移進(jìn)行抵消。

梯度圖像計(jì)算
Mat gx, gy;
Sobel(gray, gx, CV_32F, 1, 0);
Sobel(gray, gy, CV_32F, 0, 1);
Mat magnitude, direction;
cartToPolar(gx, gy, magnitude, direction);
long contoursLength = 0;
double magnitudeTemp = 0;
int originx = contours[0][0].x;
int originy = contours[0][0].y;模板生成
// 提取dx\dy\mag\log信息
vector<vector<ptin>> contoursInfo;
// 提取相對(duì)坐標(biāo)位置
vector<vector<Point>> contoursRelative;
// 開始提取
for (int i = 0; i < contours.size(); i++) {
int n = contours[i].size();
contoursLength += n;
contoursInfo.push_back(vector<ptin>(n));
vector<Point> points(n);
for (int j = 0; j < n; j++) {
int x = contours[i][j].x;
int y = contours[i][j].y;
points[j].x = x - originx;
points[j].y = y - originy;
ptin pointInfo;
pointInfo.DerivativeX = gx.at<float>(y, x);
pointInfo.DerivativeY = gy.at<float>(y, x);
magnitudeTemp = magnitude.at<float>(y, x);
pointInfo.Magnitude = magnitudeTemp;
if (magnitudeTemp != 0)
pointInfo.MagnitudeN = 1 / magnitudeTemp;
contoursInfo[i][j] = pointInfo;
}
contoursRelative.push_back(points);
}計(jì)算目標(biāo)圖像梯度
// 計(jì)算目標(biāo)圖像梯度
Mat grayImage;
cvtColor(src, grayImage, COLOR_BGR2GRAY);
Mat gradx, grady;
Sobel(grayImage, gradx, CV_32F, 1, 0);
Sobel(grayImage, grady, CV_32F, 0, 1);
Mat mag, angle;
cartToPolar(gradx, grady, mag, angle);NCC模板匹配
double partialScore = 0;
double resultScore = 0;
int resultX = 0;
int resultY = 0;
double start = (double)getTickCount();
for (int row = 0; row < grayImage.rows; row++) {
for (int col = 0; col < grayImage.cols; col++) {
double sum = 0;
long num = 0;
for (int m = 0; m < contoursRelative.size(); m++) {
for (int n = 0; n < contoursRelative[m].size(); n++) {
num += 1;
int curX = col + contoursRelative[m][n].x;
int curY = row + contoursRelative[m][n].y;
if (curX < 0 || curY < 0 || curX > grayImage.cols - 1 || curY > grayImage.rows - 1) {
continue;
}
// 目標(biāo)邊緣梯度
double sdx = gradx.at<float>(curY, curX);
double sdy = grady.at<float>(curY, curX);
// 模板邊緣梯度
double tdx = contoursInfo[m][n].DerivativeX;
double tdy = contoursInfo[m][n].DerivativeY;
// 計(jì)算匹配
if ((sdy != 0 || sdx != 0) && (tdx != 0 || tdy != 0))
{
double nMagnitude = mag.at<float>(curY, curX);
if (nMagnitude != 0)
sum += (sdx * tdx + sdy * tdy) * contoursInfo[m][n].MagnitudeN / nMagnitude;
}
// 任意節(jié)點(diǎn)score之和必須大于最小閾值
partialScore = sum / num;
if (partialScore < min((minScore - 1) + (nGreediness * num), nMinScore * num))
break;
}
}
// 保存匹配起始點(diǎn)
if (partialScore > resultScore)
{
resultScore = partialScore;
resultX = col;
resultY = row;
}
}
}正常光照

光照非常暗

改進(jìn):
不需要全局匹配,可以對(duì)目標(biāo)圖像先做一個(gè)小梯度閾值,然后再進(jìn)行匹配,提升速度、構(gòu)造目標(biāo)圖像金字塔,實(shí)現(xiàn)多分辨率模板匹配支持!
覺得不錯(cuò)點(diǎn)【好看】支持一下!
參考:
https://www.codeproject.com/articles/99457/edge-based-template-matching
END
整理不易,點(diǎn)贊三連↓
