<kbd id="afajh"><form id="afajh"></form></kbd>
<strong id="afajh"><dl id="afajh"></dl></strong>
    <del id="afajh"><form id="afajh"></form></del>
        1. <th id="afajh"><progress id="afajh"></progress></th>
          <b id="afajh"><abbr id="afajh"></abbr></b>
          <th id="afajh"><progress id="afajh"></progress></th>

          GNN教程:圖神經(jīng)網(wǎng)絡(luò)基礎(chǔ)知識(shí)!

          共 3390字,需瀏覽 7分鐘

           ·

          2020-11-11 03:06

          ↑↑↑關(guān)注后"星標(biāo)"Datawhale

          每日干貨?&?每月組隊(duì)學(xué)習(xí),不錯(cuò)過(guò)

          ?Datawhale干貨?

          作者:秦州,阿里巴巴,Datawhale成員

          系列規(guī)劃

          本文為GNN教程 【第一章 基礎(chǔ):三劍客】的第一篇文章 【01 基礎(chǔ)知識(shí)】,下圖展示了我們?cè)谶@一系列的規(guī)劃,接下來(lái)我們將會(huì)介紹圖神經(jīng)網(wǎng)絡(luò)的三個(gè)基本模型,使大家對(duì)他們有所了解。

          基礎(chǔ)知識(shí)

          圖卷積神經(jīng)網(wǎng)絡(luò)(Graph Convolutional Network)作為最近幾年興起的一種基于圖結(jié)構(gòu)的廣義神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),因?yàn)槠洫?dú)特的計(jì)算能力,而受到廣泛學(xué)者的關(guān)注與研究。傳統(tǒng)深度學(xué)習(xí)模型 LSTM 和 CNN 在歐幾里得空間數(shù)據(jù)(語(yǔ)言,圖像,視頻等)上取得了不錯(cuò)的成績(jī),但是在對(duì)非歐幾里得空間數(shù)據(jù)(eg:社交網(wǎng)絡(luò)、信息網(wǎng)絡(luò)等)進(jìn)行處理上卻存在一定的局限性。

          針對(duì)該問(wèn)題,研究者們引入了圖論中抽象意義上的圖(Graph)來(lái)表示非歐幾里得結(jié)構(gòu)化數(shù)據(jù)。并利用圖卷積網(wǎng)絡(luò)對(duì)來(lái)圖(Graph)數(shù)據(jù)進(jìn)行處理,以深入發(fā)掘其特征和規(guī)律。

          本文首先分別介紹了歐幾里得結(jié)構(gòu)化數(shù)據(jù)和非歐幾里得結(jié)構(gòu)化數(shù)據(jù)特點(diǎn);然后,針對(duì)非歐幾里得結(jié)構(gòu)化數(shù)據(jù)的表示問(wèn)題,引入了圖論中抽象意義上的圖(Graph)概念,并對(duì)圖(Graph)中一些表示形式進(jìn)行介紹;最后,通過(guò)一個(gè)簡(jiǎn)單的例子,對(duì)圖(Graph)數(shù)據(jù)的應(yīng)用進(jìn)行介紹。以幫助讀者加深對(duì)圖(Graph)的理解。

          歐幾里得結(jié)構(gòu)化數(shù)據(jù)

          1. 歐幾里得空間

          歐幾里德空間(Euclidean Space),簡(jiǎn)稱為歐氏空間(也可以稱為平直空間),在數(shù)學(xué)中是對(duì)歐幾里德所研究的2維和3維空間的一般化。這個(gè)一般化把歐幾里德對(duì)于距離、以及相關(guān)的概念長(zhǎng)度和角度,轉(zhuǎn)換成任意數(shù)維的坐標(biāo)系。如下圖所示。

          圖 a 表示二維歐幾里得空間,圖 b 表示三維歐幾里得空間。

          2. 常見(jiàn)的歐幾里得結(jié)構(gòu)化數(shù)據(jù)

          將數(shù)據(jù)轉(zhuǎn)換到歐幾里得空間中,所得到的數(shù)據(jù)稱為歐幾里得結(jié)構(gòu)化數(shù)據(jù)。

          常見(jiàn)的歐幾里得結(jié)構(gòu)化數(shù)據(jù)主要包含:

          • 1D:聲音,時(shí)間序列等;
          • 2D:圖像等;
          • 3D:視頻,高光譜圖像等;

          非歐幾里得結(jié)構(gòu)化數(shù)據(jù)

          1. 非歐幾里得空間

          然而,科學(xué)研究中并不是所有的數(shù)據(jù)都能夠被轉(zhuǎn)換到歐幾里得空間中(eg:社交網(wǎng)絡(luò)、信息網(wǎng)絡(luò)等),對(duì)于不能進(jìn)行歐幾里得結(jié)構(gòu)化的數(shù)據(jù),我們將其稱為非歐幾里得結(jié)構(gòu)化數(shù)據(jù)。

          2. 非常見(jiàn)的歐幾里得結(jié)構(gòu)化數(shù)據(jù)

          常見(jiàn)的非歐幾里得結(jié)構(gòu)化數(shù)據(jù)主要包含:

          • 1D:社交網(wǎng)絡(luò)(eg:Facebook,Twitter等)等;
          • 2D:生物網(wǎng)絡(luò)(基因,分子,大腦連接)等;
          • 3D:基礎(chǔ)設(shè)施網(wǎng)絡(luò)(eg:能源,交通,互聯(lián)網(wǎng),通信等)等;

          圖(Graph)

          1. 圖(Graph)的引入

          針對(duì)非歐幾里得結(jié)構(gòu)化數(shù)據(jù)表示問(wèn)題,研究者們引入了圖論中抽象意義上的圖(Graph)來(lái)表示非歐幾里得結(jié)構(gòu)化數(shù)據(jù)。

          2. 圖(Graph)的定義

          圖(Graph)定義形式為,其結(jié)構(gòu)如下圖所示:

          一個(gè)有標(biāo)號(hào)的簡(jiǎn)單圖,點(diǎn)集為:

          邊集為:

          另外, 表示頂點(diǎn)或節(jié)點(diǎn), 其中表示節(jié)點(diǎn)的個(gè)數(shù)。

          表示頂點(diǎn)與頂點(diǎn)之間所連接的邊;


          3. 圖(Graph)的表示形式

          3.1 鄰接矩陣( Adjacency matrix )

          鄰接矩陣是一個(gè)元素為bool值或權(quán)值的矩陣,該矩陣的定義如下:

          若圖中存在一條連接頂點(diǎn)的邊,則,否則為0。當(dāng)圖是稠密時(shí),鄰接矩陣是比較合適的表達(dá)方法。如下圖所示:

          +---+---+---+---+---+---+---+
          | | 1 | 2 | 3 | 4 | 5 | 6 |
          +---+---+---+---+---+---+---+
          | 1 | 0 | 1 | 0 | 0 | 1 | 0 |
          +---+---+---+---+---+---+---+
          | 2 | 1 | 0 | 1 | 0 | 0 | 0 |
          +---+---+---+---+---+---+---+
          | 3 | 0 | 1 | 0 | 1 | 0 | 0 |
          +---+---+---+---+---+---+---+
          | 4 | 0 | 0 | 1 | 0 | 1 | 1 |
          +---+---+---+---+---+---+---+
          | 5 | 1 | 0 | 0 | 1 | 0 | 0 |
          +---+---+---+---+---+---+---+
          | 6 | 0 | 0 | 0 | 1 | 0 | 0 |
          +---+---+---+---+---+---+---+

          上圖的鄰接矩陣表示。

          3.2 度矩陣( Degree matrix )

          度矩陣( Degree matrix)是一個(gè)? 為節(jié)點(diǎn)的度的對(duì)角矩陣,其定義如下所示:


          +---+---+---+---+---+---+---+
          | | 1 | 2 | 3 | 4 | 5 | 6 |
          +---+---+---+---+---+---+---+
          | 1 | 2 | | | | | |
          +---+---+---+---+---+---+---+
          | 2 | | 3 | | | | |
          +---+---+---+---+---+---+---+
          | 3 | | | 2 | | | |
          +---+---+---+---+---+---+---+
          | 4 | | | | 3 | | |
          +---+---+---+---+---+---+---+
          | 5 | | | | | 3 | |
          +---+---+---+---+---+---+---+
          | 6 | | | | | | 1 |
          +---+---+---+---+---+---+---+

          上圖的度矩陣表示。

          3.3 鄰域( Neighborhood )

          鄰域( Neighborhood) 表示與某個(gè)頂點(diǎn)有邊連接的點(diǎn)集,其定義如下所示:

          例如,節(jié)點(diǎn)的領(lǐng)域?yàn)?span role="presentation" data-formula="{2, 5}" data-formula-type="inline-equation" style>

          圖上的學(xué)習(xí)任務(wù)

          介紹完圖的基本術(shù)語(yǔ)之后,我們來(lái)看看有了圖結(jié)構(gòu)數(shù)據(jù),我們可以進(jìn)行哪些機(jī)器學(xué)習(xí)的任務(wù)

          • 圖節(jié)點(diǎn)分類(lèi)任務(wù):圖中每個(gè)節(jié)點(diǎn)都有對(duì)應(yīng)的特征,當(dāng)我們已知一些節(jié)點(diǎn)的類(lèi)別的時(shí)候,可以設(shè)計(jì)分類(lèi)任務(wù)針對(duì)未知節(jié)點(diǎn)進(jìn)行分類(lèi)。我們接下來(lái)要介紹的 GCN、GraphSAGE、GAT模型都是對(duì)圖上的節(jié)點(diǎn)分類(lèi)。
          • 圖邊結(jié)構(gòu)預(yù)測(cè)任務(wù):圖中的節(jié)點(diǎn)和節(jié)點(diǎn)之間的邊關(guān)系可能在輸入數(shù)據(jù)中能夠采集到,而有些隱藏的邊需要我們挖掘出來(lái),這類(lèi)任務(wù)就是對(duì)邊的預(yù)測(cè)任務(wù),也就是對(duì)節(jié)點(diǎn)和節(jié)點(diǎn)之間關(guān)系的預(yù)測(cè)。
          • 圖的分類(lèi):對(duì)于整個(gè)圖來(lái)說(shuō),我們也可以對(duì)圖分類(lèi),圖分類(lèi)又稱為圖的同構(gòu)問(wèn)題,基本思路是將圖中節(jié)點(diǎn)的特征聚合起來(lái)作為圖的特征,再進(jìn)行分類(lèi)。

          圖數(shù)據(jù)應(yīng)用舉例

          對(duì)于一個(gè)簡(jiǎn)單的電商的圖,其包含賣(mài)家,商品和用戶三個(gè)關(guān)鍵節(jié)點(diǎn),其中,商品節(jié)點(diǎn)關(guān)聯(lián)商品類(lèi)別節(jié)點(diǎn),用戶節(jié)點(diǎn)關(guān)聯(lián)注冊(cè) IP 節(jié)點(diǎn)和 注冊(cè)地址節(jié)點(diǎn)。當(dāng)用戶在購(gòu)買(mǎi)商品時(shí),用戶節(jié)點(diǎn)和商品節(jié)點(diǎn)就會(huì)關(guān)聯(lián)交易節(jié)點(diǎn),同時(shí),交易節(jié)點(diǎn)也會(huì)關(guān)聯(lián)用戶下單時(shí)所對(duì)應(yīng)的 IP 節(jié)點(diǎn)以及收獲地址節(jié)點(diǎn),對(duì)應(yīng)的圖結(jié)構(gòu)如下圖所示。

          從圖數(shù)據(jù)中節(jié)點(diǎn)間的關(guān)系以及特征,我們可以進(jìn)行反欺詐以及商品推薦的操作。

          1. 節(jié)點(diǎn)分類(lèi)—反欺詐:因?yàn)閳D中每個(gè)節(jié)點(diǎn)都擁有自己的特征信息。通過(guò)該特征信息,我們可以構(gòu)建一個(gè)風(fēng)控系統(tǒng),如果交易節(jié)點(diǎn)所關(guān)聯(lián)的用戶 IP 和收貨地址與用戶注冊(cè) IP 和注冊(cè)地址不匹配,那么系統(tǒng)將有可能認(rèn)為該用戶存在欺詐風(fēng)險(xiǎn)。
          2. 邊結(jié)構(gòu)預(yù)測(cè)—商品推薦:圖中每個(gè)節(jié)點(diǎn)都具有結(jié)構(gòu)信息。如果用戶頻繁購(gòu)買(mǎi)某種類(lèi)別商品或?qū)δ撤N類(lèi)別商品評(píng)分較高,那么系統(tǒng)就可以認(rèn)定該用戶對(duì)該類(lèi)商品比較感興趣,所以就可以向該用戶推薦更多該類(lèi)別的商品。

          總而言之,圖數(shù)據(jù)的豐富應(yīng)用價(jià)值促使更多的研究者加入圖數(shù)據(jù)的研究當(dāng)中,但是對(duì)圖數(shù)據(jù)進(jìn)行數(shù)據(jù)分析時(shí),我們需要同時(shí)考慮到節(jié)點(diǎn)的特征信息以及結(jié)構(gòu)信息。如果靠手工規(guī)則來(lái)提取,必將失去很多隱蔽和復(fù)雜的模式,那么有沒(méi)有一種方法能自動(dòng)化地同時(shí)學(xué)到圖的特征信息與結(jié)構(gòu)信息呢?這就是近年來(lái)興起的機(jī)器學(xué)習(xí)的一個(gè)熱點(diǎn)方向—圖神經(jīng)網(wǎng)絡(luò)(Graph Neural Networks)。接下來(lái)我們將以一個(gè)系列的文章介紹它們。

          “干貨學(xué)習(xí),點(diǎn)三連
          瀏覽 55
          點(diǎn)贊
          評(píng)論
          收藏
          分享

          手機(jī)掃一掃分享

          分享
          舉報(bào)
          評(píng)論
          圖片
          表情
          推薦
          點(diǎn)贊
          評(píng)論
          收藏
          分享

          手機(jī)掃一掃分享

          分享
          舉報(bào)
          <kbd id="afajh"><form id="afajh"></form></kbd>
          <strong id="afajh"><dl id="afajh"></dl></strong>
            <del id="afajh"><form id="afajh"></form></del>
                1. <th id="afajh"><progress id="afajh"></progress></th>
                  <b id="afajh"><abbr id="afajh"></abbr></b>
                  <th id="afajh"><progress id="afajh"></progress></th>
                  国产高清视频在线播放 | 精品国产卡一卡二 | 国产在线精品婷婷 | 天天影视网色欲 | 豆花视频网页版在线观看网址 |