算法工程師常用煉丹技巧匯總
↑↑↑點(diǎn)擊上方藍(lán)字,回復(fù)資料,10個(gè)G的驚喜
本文轉(zhuǎn)載自:煉丹筆記 | 作者:時(shí)晴


Focal Loss
針對(duì)類別不平衡問題,用預(yù)測(cè)概率對(duì)不同類別的loss進(jìn)行加權(quán)。Focal loss對(duì)CE loss增加了一個(gè)調(diào)制系數(shù)來降低容易樣本的權(quán)重值,使得訓(xùn)練過程更加關(guān)注困難樣本。
loss = -np.log(p)
loss = (1-p)^G * loss

Dropout

隨機(jī)丟棄,抑制過擬合,提高模型魯棒性。


Normalization
Batch Normalization 于2015年由 Google 提出,開 Normalization 之先河。其規(guī)范化針對(duì)單個(gè)神經(jīng)元進(jìn)行,利用網(wǎng)絡(luò)訓(xùn)練時(shí)一個(gè) mini-batch 的數(shù)據(jù)來計(jì)算該神經(jīng)元
的均值和方差,因而稱為 Batch Normalization。
x = (x - x.mean()) / x.std()

relu

用極簡(jiǎn)的方式實(shí)現(xiàn)非線性激活,緩解梯度消失。
x = max(x, 0)

Cyclic LR

每隔一段時(shí)間重啟學(xué)習(xí)率,這樣在單位時(shí)間內(nèi)能收斂到多個(gè)局部最小值,可以得到很多個(gè)模型做集成。
scheduler = lambda x: ((LR_INIT-LR_MIN)/2)*(np.cos(PI*(np.mod(x-1,CYCLE)/(CYCLE)))+1)+LR_MIN


With Flooding

當(dāng)training loss大于一個(gè)閾值時(shí),進(jìn)行正常的梯度下降;當(dāng)training loss低于閾值時(shí),會(huì)反過來進(jìn)行梯度上升,讓training loss保持在一個(gè)閾值附近,讓模型持續(xù)進(jìn)行“random walk”,并期望模型能被優(yōu)化到一個(gè)平坦的損失區(qū)域,這樣發(fā)現(xiàn)test loss進(jìn)行了double decent。
flood = (loss - b).abs() + b

Group Normalization

Face book AI research(FAIR)吳育昕-愷明聯(lián)合推出重磅新作Group Normalization(GN),提出使用Group Normalization 替代深度學(xué)習(xí)里程碑式的工作Batch normalization。一句話概括,Group Normbalization(GN)是一種新的深度學(xué)習(xí)歸一化方式,可以替代BN。
def GroupNorm(x, gamma, beta, G, eps=1e-5):
# x: input features with shape [N,C,H,W]
# gamma, beta: scale and offset, with shape [1,C,1,1]
# G: number of groups for GN
N, C, H, W = x.shape
x = tf.reshape(x, [N, G, C // G, H, W])
mean, var = tf.nn.moments(x, [2, 3, 4], keep dims=True)
x = (x - mean) / tf.sqrt(var + eps)
x = tf.reshape(x, [N, C, H, W])
return x * gamma + beta

Label Smoothing


label smoothing將hard label轉(zhuǎn)變成soft label,使網(wǎng)絡(luò)優(yōu)化更加平滑。標(biāo)簽平滑是用于深度神經(jīng)網(wǎng)絡(luò)(DNN)的有效正則化工具,該工具通過在均勻分布和hard標(biāo)簽之間應(yīng)用加權(quán)平均值來生成soft標(biāo)簽。它通常用于減少訓(xùn)練DNN的過擬合問題并進(jìn)一步提高分類性能。
targets = (1 - label_smooth) * targets + label_smooth / num_classes


Wasserstein GAN

徹底解決GAN訓(xùn)練不穩(wěn)定的問題,不再需要小心平衡生成器和判別器的訓(xùn)練程度
基本解決了Collapse mode的問題,確保了生成樣本的多樣性
訓(xùn)練過程中終于有一個(gè)像交叉熵、準(zhǔn)確率這樣的數(shù)值來指示訓(xùn)練的進(jìn)程,數(shù)值越小代表GAN訓(xùn)練得越好,代表生成器產(chǎn)生的圖像質(zhì)量越高
不需要精心設(shè)計(jì)的網(wǎng)絡(luò)架構(gòu),最簡(jiǎn)單的多層全連接網(wǎng)絡(luò)就可以做到以上3點(diǎn)。


Skip Connection
一種網(wǎng)絡(luò)結(jié)構(gòu),提供恒等映射的能力,保證模型不會(huì)因網(wǎng)絡(luò)變深而退化。
F(x) = F(x) + x
https://www.zhihu.com/question/427088601
https://arxiv.org/pdf/1701.07875.pdf
https://zhuanlan.zhihu.com/p/25071913
https://www.zhihu.com/people/yuconan/posts
也可以加一下老胡的微信 圍觀朋友圈~~~
推薦閱讀
(點(diǎn)擊標(biāo)題可跳轉(zhuǎn)閱讀)
【清華大學(xué)王東老師】現(xiàn)代機(jī)器學(xué)習(xí)技術(shù)導(dǎo)論.pdf
機(jī)器學(xué)習(xí)中令你事半功倍的pipeline處理機(jī)制
老鐵,三連支持一下,好嗎?↓↓↓
