100 個統(tǒng)計學(xué)和 R 語言學(xué)習(xí)資源網(wǎng)站
簡介
原文:統(tǒng)計學(xué) & R學(xué)習(xí)資源
編輯:莊閃閃的R語言手冊,pythonic生物人
作者:CoffeeCat[1]
轉(zhuǎn)載于:Coffee學(xué)生物統(tǒng)計的地方[2]
注:有些鏈接需要科學(xué)上網(wǎng)/較硬的英文閱讀能力才能愉快地體驗知識/技術(shù)帶來的快感。如果公眾號閱讀體驗不佳,可以在文末原文鏈接跳轉(zhuǎn)。
1.個人主頁、博客、社區(qū)、論壇
北大李東風(fēng)[3]
中科大張偉平[4]
謝益輝(人稱謝大大)[5]:統(tǒng)計之都論壇[6]創(chuàng)始人(與之有關(guān)的統(tǒng)計之都[7])
統(tǒng)計學(xué)資源鏈接大全[8]:知名 統(tǒng)計系、統(tǒng)計學(xué)會、統(tǒng)計組織、統(tǒng)計軟件、統(tǒng)計期刊的官網(wǎng)(該老師的主頁[9])
斯坦福大學(xué)統(tǒng)計系:Trevor Hastie[10]、Jerome H. Friedman[11]、Rob Tibshirani[12]
顧凱[13]:統(tǒng)計分析師;R、SAS、醫(yī)學(xué)統(tǒng)計博主
revolutionanalytics[14]:一個R社區(qū)(Revolution Analytics開發(fā)了Revolution R,后來被微軟收購)
r-bloggers[15]:R博客
Statistics How To[16]:統(tǒng)計學(xué)與SPSS, Minitab, Excel
Statistical Modeling, Causal Inference, and Social Science[17]:哥大統(tǒng)計“統(tǒng)計建模,因果推論和社會科學(xué)”
Error Statistics Philosophy[18]:統(tǒng)計哲學(xué)家Deborah G. Mayo
Simply Statistics[19]:三位生物統(tǒng)計專家的Jeff Leek[20], Roger Peng[21], Rafa Irizarry[22]的博客
FLOWINGDATA[23]:分析、數(shù)據(jù)可視化(付費)
Statistics by Jim[24]:使統(tǒng)計更直觀
2.電子書、課程
Library Genesis[25]:外文電子書大全。結(jié)合亞馬遜[26]、Routledge[27](Chapman \& Hall/CRC Texts in Statistical Science[28]、Chapman \& Hall/CRC Biostatistics Series[29])、Springer[30](Springer Statistics[31])、Elsevier[32]、Oxford University Press[33](Probability \& Statistics[34])、Cambridge University Press[35](Statistics and probability[36])……幾乎可以找到你想要的一切。
電子書From Bookdown[37]:
鏈接網(wǎng)頁上方許多按鈕是可以按的,請自行探索
數(shù)據(jù)科學(xué)中的R語言[38]:非常全面的R教程
R語言忍者秘籍[39]:謝大大的R教程
現(xiàn)代統(tǒng)計圖形[40]:謝大大R可視化的佳作
Statistics Handbook[41]:R語言統(tǒng)計分析小冊子(有類似的中文的:薛毅老師的《統(tǒng)計建模與R軟件》)
R for Data Science[42]:COPSS獎得主、RStudio首席科學(xué)家Hadley Wickham[43]的傾力之作,學(xué)習(xí)tidyverse[44]重要語法的不二之選
Advanced R[45]:Hadley Wickham[46]的提高R語言編程技能(本書的習(xí)題解答[47])
R Graphics Cookbook[48]:R基礎(chǔ)繪圖圣經(jīng)
Data Visualization with R[49]:R語言實戰(zhàn)的作者的另一個作品
R Gallery Book[50]:The R Graph Gallery[51]的完整指南
Beyond Multiple Linear Regression[52]:回歸分析的拓展:廣義線性模型和分層模型
Applied longitudinal data analysis in brms and the tidyverse[53]:縱向數(shù)據(jù)分析
Interpretable Machine Learning[54]:可解釋機器學(xué)習(xí)
現(xiàn)代應(yīng)用統(tǒng)計與R語言[55]:顧名思義
R語言教程[56]:同上
統(tǒng)計計算[57]:同上
零基礎(chǔ)學(xué)R語言[58]:同上
Rmd權(quán)威指南[59]:by謝大大
Rmd中文指南[60]:這本似乎還未完待續(xù)
blogdown[61]:謝大大用R寫博客
bookdown[62]:謝大大用R寫書
電子書、在線課程、教程
生物統(tǒng)計手冊:Handbook of Biological Statistics[63] 以及它的R陪同:An R Companion for the Handbook of Biological Statistics[64]
部分免費的數(shù)據(jù)科學(xué)課程:DataCamp[65]、Dataquest[66]、Datanovia[67]
Biomedical Data Science[68]:生物醫(yī)學(xué)數(shù)據(jù)科學(xué)
Introduction to Econometrics with R[69]:R語言計量經(jīng)濟學(xué)導(dǎo)論(量:第四聲)
Forecasting: Principles and Practice (3rd ed)[70]:旨在全面介紹預(yù)測方法
以下兩本是統(tǒng)計學(xué)習(xí)圣經(jīng):
An Introduction to Statistical Learning\(1 ed.\)[71]:ISLR第一版(2021年夏季出第二版:官網(wǎng)[72])
The Elements of Statistical Learning[73]:ESL官網(wǎng)
3.R Packages
Awesome R[74]:優(yōu)秀的R包和資料
tidyverse[75]、tidymodels[76]:分別代表數(shù)據(jù)分析、統(tǒng)計模型的一套流程
ggplot2[77] & its 82 extensions[78]:可視化領(lǐng)域的少林
shiny[79]:交互、可視化、分析平臺(它的畫廊[80])
plotly[81]:可視化另一佳作
htmlwidgets for R[82]:126個HTML圖形插件
R任務(wù)視圖[83]:包含了四十多個熱門主題,每個主題下面都有幾十個包供你選擇
xaringan[84]:謝大大用R寫ppt英文模板[85]、中文模板[86]
R數(shù)據(jù)集:R自帶的datesets[87] package、更全的Rdatasets[88](不是package,只是含有dataset的package的信息)
4.Others
R官方文檔[89]、R貢獻文檔[90]
timeline-of-statistics.pdf[91]:簡明統(tǒng)計學(xué)史(by ASA)
RStudio的cheatsheet[92]:快速回顧一些R包的基本語法(支持郵件訂閱;鼓勵大家參與到該網(wǎng)址中的中文翻譯項目;當然除了由RStudio發(fā)布的cheatsheet,還有其他機構(gòu)也會發(fā)布,比如DataCamp的cheatsheet[93],其中還有Python的)
幫助自學(xué):
UCB統(tǒng)計系推薦閱讀清單[94]
ASA的統(tǒng)計學(xué)本科課程大綱[95]
閱讀材料:
Statistical Science Conversations[96]:IMS的與一百多位統(tǒng)計學(xué)家的訪談專欄
How R Helps Airbnb Make the Most of its Data[97]
Why Is It Called That Way\?\! – Origin and Meaning of R Package Names[98]:一些R包名稱的由來
Tidy Data[99]:by Hadley Wickham
未完待續(xù).
參考資料
CoffeeCat: https://www.zhihu.com/people/CoffeeCat2000
[2]Coffee學(xué)生物統(tǒng)計的地方: https://www.zhihu.com/column/c_1242033096192262144
[3]北大李東風(fēng): https://link.zhihu.com/?target=https%3A//www.math.pku.edu.cn/teachers/lidf/
[4]中科大張偉平: https://link.zhihu.com/?target=http%3A//staff.ustc.edu.cn/~zwp/teach.htm
[5]謝益輝: https://link.zhihu.com/?target=https%3A//yihui.org/
[6]統(tǒng)計之都論壇: https://link.zhihu.com/?target=https%3A//d.cosx.org/
[7]統(tǒng)計之都: https://link.zhihu.com/?target=https%3A//cosx.org/
[8]統(tǒng)計學(xué)資源鏈接大全: https://link.zhihu.com/?target=http%3A//staff.ustc.edu.cn/~ynyang/stat-resources.html
[9]該老師的主頁: https://link.zhihu.com/?target=http%3A//staff.ustc.edu.cn/~ynyang
[10]Trevor Hastie: https://link.zhihu.com/?target=http%3A//www-stat.stanford.edu/~hastie/
[11]Jerome H. Friedman: https://link.zhihu.com/?target=http%3A//statweb.stanford.edu/~jhf/
[12]Rob Tibshirani: https://link.zhihu.com/?target=http%3A//statweb.stanford.edu/~tibs/
[13]顧凱: https://link.zhihu.com/?target=https%3A//www.bioinfo-scrounger.com/
[14]revolutionanalytics: https://link.zhihu.com/?target=https%3A//blog.revolutionanalytics.com/
[15]r-bloggers: https://link.zhihu.com/?target=https%3A//www.r-bloggers.com/
[16]Statistics How To: https://link.zhihu.com/?target=https%3A//www.statisticshowto.com/
[17]Statistical Modeling, Causal Inference, and Social Science: https://link.zhihu.com/?target=https%3A//statmodeling.stat.columbia.edu/
[18]Error Statistics Philosophy: https://link.zhihu.com/?target=https%3A//errorstatistics.com/
[19]Simply Statistics: https://link.zhihu.com/?target=https%3A//simplystatistics.org/
[20]Jeff Leek: https://link.zhihu.com/?target=http%3A//www.biostat.jhsph.edu/~jleek/research.html
[21]Roger Peng: https://link.zhihu.com/?target=http%3A//www.biostat.jhsph.edu/~rpeng/
[22]Rafa Irizarry: https://link.zhihu.com/?target=http%3A//rafalab.dfci.harvard.edu/
[23]FLOWINGDATA: https://link.zhihu.com/?target=https%3A//flowingdata.com/
[24]Statistics by Jim: https://link.zhihu.com/?target=https%3A//statisticsbyjim.com/
[25]Library Genesis: https://link.zhihu.com/?target=http%3A//libgen.rs/
[26]亞馬遜: https://link.zhihu.com/?target=http%3A//amazon.com/
[27]Routledge: https://link.zhihu.com/?target=https%3A//www.routledge.com/
[28]Chapman & Hall/CRC Texts in Statistical Science: https://link.zhihu.com/?target=https%3A//www.routledge.com/Chapman--HallCRC-Texts-in-Statistical-Science/book-series/CHTEXSTASCI
[29]Chapman & Hall/CRC Biostatistics Series: https://link.zhihu.com/?target=https%3A//www.routledge.com/Chapman--HallCRC-Biostatistics-Series/book-series/CHBIOSTATIS
[30]Springer: https://link.zhihu.com/?target=https%3A//www.springer.com/
[31]Springer Statistics: https://link.zhihu.com/?target=https%3A//www.springer.com/gp/statistics
[32]Elsevier: https://link.zhihu.com/?target=https%3A//www.elsevier.com/
[33]Oxford University Press: https://link.zhihu.com/?target=https%3A//global.oup.com/academic/%3Fcc%3Dus%26lang%3Den%26
[34]Probability & Statistics: https://link.zhihu.com/?target=https%3A//global.oup.com/academic/category/science-and-mathematics/mathematics/probability-and-statistics/%3Fcc%3Dus%26lang%3Den%26
[35]Cambridge University Press: https://link.zhihu.com/?target=https%3A//www.cambridge.org/cn/academic
[36]Statistics and probability: https://link.zhihu.com/?target=https%3A//www.cambridge.org/cn/academic/subjects/statistics-probability/
[37]Bookdown: https://link.zhihu.com/?target=https%3A//bookdown.org/home/archive/
[38]數(shù)據(jù)科學(xué)中的R語言: https://link.zhihu.com/?target=https%3A//bookdown.org/wangminjie/R4DS/
[39]R語言忍者秘籍: https://link.zhihu.com/?target=https%3A//bookdown.org/yihui/r-ninja/
[40]現(xiàn)代統(tǒng)計圖形: https://link.zhihu.com/?target=https%3A//bookdown.org/xiangyun/msg/
[41]Statistics Handbook: https://link.zhihu.com/?target=https%3A//bookdown.org/mpfoley1973/statistics/
[42]R for Data Science: https://link.zhihu.com/?target=https%3A//bookdown.org/roy_schumacher/r4ds/
[43]Hadley Wickham: https://link.zhihu.com/?target=http%3A//hadley.nz/
[44]tidyverse: https://link.zhihu.com/?target=https%3A//www.tidyverse.org/packages/
[45]Advanced R: https://link.zhihu.com/?target=https%3A//adv-r.hadley.nz/
[46]Hadley Wickham: https://link.zhihu.com/?target=http%3A//hadley.nz/
[47]習(xí)題解答: https://link.zhihu.com/?target=https%3A//advanced-r-solutions.rbind.io/
[48]R Graphics Cookbook: https://link.zhihu.com/?target=https%3A//r-graphics.org/
[49]Data Visualization with R: https://link.zhihu.com/?target=https%3A//rkabacoff.github.io/datavis/
[50]R Gallery Book: https://link.zhihu.com/?target=https%3A//bookdown.org/content/b298e479-b1ab-49fa-b83d-a57c2b034d49/
[51]The R Graph Gallery: https://link.zhihu.com/?target=https%3A//www.r-graph-gallery.com/
[52]Beyond Multiple Linear Regression: https://link.zhihu.com/?target=https%3A//bookdown.org/roback/bookdown-BeyondMLR/
[53]Applied longitudinal data analysis in brms and the tidyverse: https://link.zhihu.com/?target=https%3A//bookdown.org/content/ef0b28f7-8bdf-4ba7-ae2c-bc2b1f012283/
[54]Interpretable Machine Learning: https://link.zhihu.com/?target=https%3A//christophm.github.io/interpretable-ml-book/
[55]現(xiàn)代應(yīng)用統(tǒng)計與R語言: https://link.zhihu.com/?target=https%3A//bookdown.org/xiangyun/masr/
[56]R語言教程: https://link.zhihu.com/?target=https%3A//www.math.pku.edu.cn/teachers/lidf/docs/Rbook/html/_Rbook/index.html
[57]統(tǒng)計計算: https://link.zhihu.com/?target=https%3A//www.math.pku.edu.cn/teachers/lidf/docs/statcomp/html/_statcompbook/index.html
[58]零基礎(chǔ)學(xué)R語言: https://link.zhihu.com/?target=https%3A//bookdown.org/qiyuandong/intro_r/
[59]Rmd權(quán)威指南: https://link.zhihu.com/?target=https%3A//bookdown.org/yihui/rmarkdown/
[60]Rmd中文指南: https://link.zhihu.com/?target=https%3A//bookdown.org/qiushi/rmarkdown-guide/
[61]blogdown: https://link.zhihu.com/?target=https%3A//bookdown.org/yihui/blogdown/
[62]bookdown: https://link.zhihu.com/?target=https%3A//bookdown.org/home/about/
[63]Handbook of Biological Statistics: https://link.zhihu.com/?target=http%3A//www.biostathandbook.com/
[64]An R Companion for the Handbook of Biological Statistics: https://link.zhihu.com/?target=https%3A//rcompanion.org/rcompanion/index.html
[65]DataCamp: https://zhuanlan.zhihu.com/p/366590161/www.datacamp.com
[66]Dataquest: https://link.zhihu.com/?target=https%3A//www.dataquest.io/
[67]Datanovia: https://link.zhihu.com/?target=https%3A//www.datanovia.com/en/
[68]Biomedical Data Science: https://link.zhihu.com/?target=http%3A//genomicsclass.github.io/book/
[69]Introduction to Econometrics with R: https://link.zhihu.com/?target=https%3A//www.econometrics-with-r.org/
[70]Forecasting: Principles and Practice (3rd ed): https://link.zhihu.com/?target=https%3A//otexts.com/fpp3/index.html
[71]An Introduction to Statistical Learning(1 ed.): https://link.zhihu.com/?target=https%3A//www.statlearning.com/s/ISLRSeventhPrinting.pdf
[72]官網(wǎng): https://link.zhihu.com/?target=https%3A//www.statlearning.com/
[73]The Elements of Statistical Learning: https://link.zhihu.com/?target=https%3A//web.stanford.edu/~hastie/ElemStatLearn/
[74]Awesome R: https://link.zhihu.com/?target=https%3A//github.com/qinwf/awesome-R/blob/master/README.md
[75]tidyverse: https://link.zhihu.com/?target=https%3A//www.tidyverse.org/packages/
[76]tidymodels: https://link.zhihu.com/?target=https%3A//www.tidymodels.org/packages/
[77]ggplot2: https://link.zhihu.com/?target=https%3A//ggplot2.tidyverse.org/
[78]its 82 extensions: https://link.zhihu.com/?target=https%3A//exts.ggplot2.tidyverse.org/gallery/
[79]shiny: https://link.zhihu.com/?target=https%3A//shiny.rstudio.com/
[80]它的畫廊: https://link.zhihu.com/?target=https%3A//shiny.rstudio.com/gallery/
[81]plotly: https://link.zhihu.com/?target=https%3A//plotly.com/r/
[82]htmlwidgets for R: https://link.zhihu.com/?target=https%3A//gallery.htmlwidgets.org/
[83]R任務(wù)視圖: https://link.zhihu.com/?target=https%3A//cran.r-project.org/web/views/
[84]xaringan: https://link.zhihu.com/?target=https%3A//github.com/yihui/xaringan
[85]英文模板: https://link.zhihu.com/?target=https%3A//slides.yihui.org/xaringan/
[86]中文模板: https://link.zhihu.com/?target=https%3A//slides.yihui.org/xaringan/zh-CN.html
[87]datesets: https://link.zhihu.com/?target=https%3A//stat.ethz.ch/R-manual/R-devel/library/datasets/html/00Index.html
[88]Rdatasets: https://link.zhihu.com/?target=https%3A//vincentarelbundock.github.io/Rdatasets/articles/data.html
[89]R官方文檔: https://link.zhihu.com/?target=https%3A//www.r-project.org/other-docs.html
[90]R貢獻文檔: https://link.zhihu.com/?target=https%3A//cran.r-project.org/other-docs.html
[91]timeline-of-statistics.pdf: https://link.zhihu.com/?target=http%3A//www.statslife.org.uk/images/pdf/timeline-of-statistics.pdf
[92]RStudio的cheatsheet: https://link.zhihu.com/?target=https%3A//www.rstudio.com/resources/cheatsheets/
[93]DataCamp的cheatsheet: https://link.zhihu.com/?target=https%3A//www.datacamp.com/community/data-science-cheatsheets
[94]UCB統(tǒng)計系推薦閱讀清單: https://link.zhihu.com/?target=http%3A//sgsa.berkeley.edu/current_students/books/
[95]ASA的統(tǒng)計學(xué)本科課程大綱: https://link.zhihu.com/?target=http%3A//www.amstat.org/education/pdfs/guidelines2014-11-15.pdf
[96]Statistical Science Conversations: https://link.zhihu.com/?target=https%3A//imstat.org/journals-and-publications/statistical-science/conversations/
[97]How R Helps Airbnb Make the Most of its Data: https://link.zhihu.com/?target=https%3A//www.tandfonline.com/doi/full/10.1080/00031305.2017.1392362
[98]Why Is It Called That Way?! – Origin and Meaning of R Package Names: https://link.zhihu.com/?target=https%3A//www.statworx.com/en/blog/why-is-it-called-that-way-origin-and-meaning-of-r-package-names/
[99]Tidy Data: https://link.zhihu.com/?target=https%3A//vita.had.co.nz/papers/tidy-data.pdf
推薦閱讀
整理不易,點贊三連↓
