<kbd id="afajh"><form id="afajh"></form></kbd>
<strong id="afajh"><dl id="afajh"></dl></strong>
    <del id="afajh"><form id="afajh"></form></del>
        1. <th id="afajh"><progress id="afajh"></progress></th>
          <b id="afajh"><abbr id="afajh"></abbr></b>
          <th id="afajh"><progress id="afajh"></progress></th>

          CVPR 2021 競賽匯總

          共 9539字,需瀏覽 20分鐘

           ·

          2021-03-08 06:32

          ↑ 點擊藍(lán)字 關(guān)注極市平臺

          作者丨Coggle
          來源丨Coggle數(shù)據(jù)科學(xué)
          編輯丨極市平臺

          極市導(dǎo)讀

           

          本文匯總了27個CVPR2021的競賽并附有相關(guān)鏈接。 >>加入極市CV技術(shù)交流群,走在計算機(jī)視覺的最前沿

          Neural Architecture Search

          1st lightweight NAS challenge and moving beyond

          https://www.cvpr21-nas.com/competition

          早期的NAS方法通過將每個神經(jīng)網(wǎng)絡(luò)在訓(xùn)練數(shù)據(jù)上都訓(xùn)練到收斂,然后評估其效果,需要耗費(fèi)大量的算力資源。

          Track1:Supernet Track

          賽道一為超網(wǎng)絡(luò)賽道,旨在解決OneshotNAS的一致性問題;

          Track2: Performance Prediction Track

          賽道二為模型性能預(yù)測賽道,旨在不做任何訓(xùn)練的情況,準(zhǔn)確的預(yù)測任意模型結(jié)構(gòu)在特定評測集的性能。

          Track3: Dataset-Agnostic Track

          賽道三鼓勵參與者提交與數(shù)據(jù)無關(guān),但能夠在完全未知的數(shù)據(jù)集上提供優(yōu)秀結(jié)果的NAS算法。

          JackRabbot Social Grouping and Activity Dataset and Benchmark

          2nd Workshop on Visual Perception for Navigation in Human Environments

          https://jrdb.stanford.edu/workshops/jrdb-cvpr21

          除了JRDB上現(xiàn)有的四個基準(zhǔn)和挑戰(zhàn)(即2D-3D人員檢測和跟蹤挑戰(zhàn))之外,在本研討會中,我們使用新的注釋來組織兩個新的挑戰(zhàn):

          • 人類社會群體檢測
          • 個人動作檢測和社交活動識別

          NTIRE 2021 challenges

          New Trends in Image Restoration and Enhancement workshop and challenges on image and video processing

          https://data.vision.ee.ethz.ch/cvl/ntire21/

          NTIRE Image challenges

          • Nonhomogeneous Dehazing
          • Defocus Deblurring using Dual-pixel
          • Depth Guided Image Relighting: Track 1 One-to-One relighting
          • Depth Guided Image Relighting: Track 2 Any-to-Any relighting
          • Perceptual Image Quality Assessment
          • Image Deblurring: Track 1 Low Resolution
          • Image Deblurring: Track 2 JPEG Artifacts
          • Multi-Modal Aerial View Imagery Classification: Track 1 (SAR)
          • Multi-Modal Aerial View Imagery Classification: Track 2 (SAR+EO)
          • Learning the Super-Resolution Space

          NTIRE video/multi-frame challenges

          • Quality enhancement of heavily compressed videos: Track 1 Fixed QP, Fidelity
          • Quality enhancement of heavily compressed videos: Track 2 Fixed QP, Perceptual
          • Quality enhancement of heavily compressed videos: Track 3 Fixed bit-rate, Fidelity
          • Video Super-Resolution: Track 1 Spatial started!
          • Video Super-Resolution: Track 2 Spatio-Temporal
          • Burst Super-Resolution: Track 1 Synthetic
          • Burst Super-Resolution: Track 2 Real
          • High Dynamic Range (HDR): Track 1 Single frame
          • High Dynamic Range (HDR): Track 2 Multiple frames

          Mobile AI 2021 challenges

          • Learned ISP (MediaTek Dimensity APU platform)
          • Image Denoising (Samsung Exynos Mali GPU platform)
          • HDR Image Processing (Huawei Kirin Da Vinci NPU platform)
          • Image Super-Resolution (Synaptics Dolphin NPU platform)
          • Video Super-Resolution (OPPO Snapdragon Adreno GPU platform)
          • Depth Estimation (Raspberry Pi 4 platform)
          • Camera Scene Detection (Apple Bionic platform)

          SHApe Recovery from Partial Textured 3D Scans

          該研討會的目的是推廣在3D掃描處理中同時利用形狀和紋理的概念,并特別注意從部分和嘈雜數(shù)據(jù)中恢復(fù)的特定任務(wù)。

          https://cvi2.uni.lu/sharp2021/

          Recovery of Human Body Scans

          Recovery of Generic Object Scans

          Recovery of Feature Edges in 3D Object Scans

          LOVEU: LOng-form VidEo Understanding

          https://sites.google.com/view/loveucvpr21/challenge

          VizWiz Grand Challenge Workshop

          https://vizwiz.org/workshops/2021-workshop/

          Task: Image Captioning

          Given an image, the task is to predict an accurate caption.

          Task: Predict Answer to a Visual Question

          Given an image and question about it, the task is to predict an accurate answer.

          Task: Predict Answerability of a Visual Question

          Given an image and question about it, the task is to predict if the visual question cannot be answered (with a confidence score in that prediction).

          Bridging the Gap between Computational Photography and Visual Recognition

          http://cvpr2021.ug2challenge.org/

          TRACK 1: OBJECT DETECTION IN POOR VISIBILITY ENVIRONMENTS

          TRACK 2: ACTION RECOGNITION FROM DARK VIDEOS

          4th Workshop and Challenge on Learned Image Compression

          image compression track

          images need to be compressed to 0.075 bpp, 0.15 bpp, and 0.3 bpp (bits per pixel).

          video compression track

          short video clips need to be compressed to around 1 Mbit/s.

          perceptual metric track

          human preferences on pairs of images will have to be predicted. The image pairs will come from the decoders submitted to the image compression track.

          5th AI City Challenge

          https://www.aicitychallenge.org/

          Challenge Track 1: Multi-Class Multi-Movement Vehicle Counting Using IoT Devices

          Participating teams will count four-wheel vehicles and freight trucks that follow pre-defined movements from multiple camera scenes.

          Challenge Track 2: City-Scale Multi-Camera Vehicle Re-Identification

          Participating teams will perform vehicle re-identification based on vehicle crops from multiple cameras placed at multiple intersections.

          Challenge Track 3: City-Scale Multi-Camera Vehicle Tracking

          Participating teams will track vehicles across multiple cameras both at a single intersection and across multiple intersections spread out across a city.

          Challenge Track 4: Traffic Anomaly Detection

          Participating teams will submit all anomalies detected in the test data, including car crashes, stalled vehicles based on video feeds from multiple cameras at intersections and along highways.

          Challenge Track 5: Natural Language-Based Vehicle Retrieval

          Natural language (NL) description offers another useful way to specify vehicle track queries.

          Large-scale Video Object Segmentation Challenge

          https://youtube-vos.org/challenge/2021/

          Our workshop has three challenges for different video segmentation tasks including semi-supervised video object segmentation, video instance segmentation and referring video object segmentation.

          Track 1: Video Object Segmentation

          Track 2: Video Instance Segmentation

          Track 3: Referring Video Object Segmentation

          Looking at People Large Scale Signer Independent Isolated SLR

          http://chalearnlap.cvc.uab.es/challenge/43/description/

          We are organizing a challenge on isolated sign language recognition from signer-independent non-controlled RGB-D data involving a large number of sign categories (>200).

          RGB Competition Track

          RGB+D Competition Track

          3rd ScanNet Indoor Scene Understanding Challenge

          http://www.scan-net.org/cvpr2021workshop/

          International Challenge on Activity Recognition (ActivityNet)

          http://activity-net.org/challenges/2021/

          n this installment of the challenge, we will host seven guest tasks (tentative) focusing on different aspects of the activity recognition problem, especially expanding from online consumer video challenges to challenges on surveillance and first-person video.

          Agriculture-Vision: Challenges & Opportunities for Computer Vision in Agriculture

          https://www.agriculture-vision.com/

          The 2nd Agriculture-Vision Prize Challenge aims to encourage research in developing novel and effective algorithms for agricultural pattern recognition from aerial images. Submissions will be evaluated and ranked by model performance.This year, we will be hosting two challenge tracks: supervised track and semi-supervised track. The top three performing submissions will receive prize rewards and presentation opportunities at our workshop.

          Built Environment for the Design, Construction, and Operation of Buildings

          https://cv4aec.github.io/

          Semantic and Instance Segmentation of building elements

          Object Attribute Prediction of building elements

          Learning from Limited or Imperfect Data

          https://l2id.github.io/

          Learning from limited or imperfect data (L^2ID) refers to a variety of studies that attempt to address challenging pattern recognition tasks by learning from limited, weak, or noisy supervision.

          Open World Vision

          http://www.cs.cmu.edu/~shuk/open-world-vision.html#competition

          Open-set image classification requires a model to distinguish novel, anomalous and semantically unknown (e.g., open-set) test-time examples.

          Adversarial Machine Learning in Real-World Computer Vision Systems and Online Challenges

          https://aisecure-workshop.github.io/amlcvpr2021/

          Adversarial Attacks on ML Defense Models

          Unrestricted Adversarial Attacks on ImageNet

          Continual Learning in Computer Vision

          https://eval.ai/web/challenges/challenge-page/829/overview

          Robust Video Scene Understanding: Tracking and Video Segmentation

          https://eval.vision.rwth-aachen.de/rvsu-workshop21/

          EarthVision: Large Scale Computer Vision for Remote Sensing Imagery

          http://www.classic.grss-ieee.org/earthvision2021/challenge.html

          DynamicEarthNet Challenge

          FloodNet Challenge

          Image Matching: Local Features & Beyond

          https://image-matching-workshop.github.io/

          Chart Question Answering Workshop

          https://cqaw.github.io/

          The CQA challenge includes 3 levels of perception: from low-level visualization building blocks to semantic reasoning that requires text extraction.

          2nd. Thermal Image Super-Resolution Challenge

          https://pbvs-workshop.github.io/challenge.html

          The Eight Workshop on Fine-Grained Visual Categorization

          https://sites.google.com/view/fgvc8

          • GeoLifeCLEF2021
          • Semi-iNat2021
          • iNatChallenge2021
          • iMet2021
          • iMat-Fashion2021
          • Hotel-ID2021
          • HerbariumChallenge2021
          • iWildCam2021
          • Plant Pathology Challenge 2021

          GAZE 2021 Challenges

          The GAZE 2021 Challenges are hosted on Codalab, and can be found at:

          • ETH-XGaze Challenge: https://competitions.codalab.org/competitions/28930
          • EVE Challenge: https://competitions.codalab.org/competitions/28954

          Autonomous Navigation in Unconstrained Environments

          http://cvit.iiit.ac.in/autonue2021/challenge/

          • Challenges for domain adaptation with varying levels of supervision.
          • Challenges for semantic segmentation.

          其他鏈接

          由于很多競賽還在更新,完整競賽參考CVPR官網(wǎng):

          • http://cvpr2021.thecvf.com/workshops-schedule

          • https://github.com/skrish13/ml-contests-conf


          推薦閱讀


          CVPR 2021接收結(jié)果出爐!錄用1663篇,接受率顯著提升,你的論文中了嗎?(附論文下載)

          2021-03-01

          CVPR2021審稿意見出爐!學(xué)術(shù)論文投稿與Rebuttal經(jīng)驗分享

          2021-01-19

          冠軍方案分享:ICPR 2020大規(guī)模商品圖像識別挑戰(zhàn)賽冠軍解讀

          2021-01-17



          # CV技術(shù)社群邀請函 #

          △長按添加極市小助手
          添加極市小助手微信(ID : cvmart2)

          備注:姓名-學(xué)校/公司-研究方向-城市(如:小極-北大-目標(biāo)檢測-深圳)


          即可申請加入極市目標(biāo)檢測/圖像分割/工業(yè)檢測/人臉/醫(yī)學(xué)影像/3D/SLAM/自動駕駛/超分辨率/姿態(tài)估計/ReID/GAN/圖像增強(qiáng)/OCR/視頻理解等技術(shù)交流群


          每月大咖直播分享、真實項目需求對接、求職內(nèi)推、算法競賽、干貨資訊匯總、與 10000+來自港科大、北大、清華、中科院、CMU、騰訊、百度等名校名企視覺開發(fā)者互動交流~


          △點擊卡片關(guān)注極市平臺,獲取最新CV干貨

          覺得有用麻煩給個在看啦~  
          瀏覽 162
          點贊
          評論
          收藏
          分享

          手機(jī)掃一掃分享

          分享
          舉報
          評論
          圖片
          表情
          推薦
          點贊
          評論
          收藏
          分享

          手機(jī)掃一掃分享

          分享
          舉報
          <kbd id="afajh"><form id="afajh"></form></kbd>
          <strong id="afajh"><dl id="afajh"></dl></strong>
            <del id="afajh"><form id="afajh"></form></del>
                1. <th id="afajh"><progress id="afajh"></progress></th>
                  <b id="afajh"><abbr id="afajh"></abbr></b>
                  <th id="afajh"><progress id="afajh"></progress></th>
                  精品1卡二卡三卡四卡老狼 | 还小没发育嫩紧在线播放 | 91九色丨国产丨爆乳 | 欧美成人在线观看视频 | 国产在线播放av 国产在线播放福利 |