面試官問:Redis 內(nèi)存滿了怎么辦?我想不到!
點(diǎn)擊關(guān)注公眾號(hào),Java干貨及時(shí)送達(dá)
Redis是基于內(nèi)存的key-value數(shù)據(jù)庫,因?yàn)橄到y(tǒng)的內(nèi)存大小有限,所以我們?cè)谑褂肦edis的時(shí)候可以配置Redis能使用的最大的內(nèi)存大小。
1、通過配置文件配置
通過在Redis安裝目錄下面的redis.conf配置文件中添加以下配置設(shè)置內(nèi)存大小
//設(shè)置Redis最大占用內(nèi)存大小為100M
maxmemory 100mb
復(fù)制代碼
redis的配置文件不一定使用的是安裝目錄下面的redis.conf文件,啟動(dòng)redis服務(wù)的時(shí)候是可以傳一個(gè)參數(shù)指定redis的配置文件的
2、通過命令修改
Redis支持運(yùn)行時(shí)通過命令動(dòng)態(tài)修改內(nèi)存大小
//設(shè)置Redis最大占用內(nèi)存大小為100M
127.0.0.1:6379> config set maxmemory 100mb
//獲取設(shè)置的Redis能使用的最大內(nèi)存大小
127.0.0.1:6379> config get maxmemory
復(fù)制代碼
如果不設(shè)置最大內(nèi)存大小或者設(shè)置最大內(nèi)存大小為0,在64位操作系統(tǒng)下不限制內(nèi)存大小,在32位操作系統(tǒng)下最多使用3GB內(nèi)存
Redis的內(nèi)存淘汰
實(shí)際上Redis定義了幾種策略用來處理這種情況:
noeviction(默認(rèn)策略):對(duì)于寫請(qǐng)求不再提供服務(wù),直接返回錯(cuò)誤(DEL請(qǐng)求和部分特殊請(qǐng)求除外)
allkeys-lru:從所有key中使用LRU算法進(jìn)行淘汰
volatile-lru:從設(shè)置了過期時(shí)間的key中使用LRU算法進(jìn)行淘汰
allkeys-random:從所有key中隨機(jī)淘汰數(shù)據(jù)
volatile-random:從設(shè)置了過期時(shí)間的key中隨機(jī)淘汰
volatile-ttl:在設(shè)置了過期時(shí)間的key中,根據(jù)key的過期時(shí)間進(jìn)行淘汰,越早過期的越優(yōu)先被淘汰
當(dāng)使用volatile-lru、volatile-random、volatile-ttl這三種策略時(shí),如果沒有key可以被淘汰,則和noeviction一樣返回錯(cuò)誤
如何獲取及設(shè)置內(nèi)存淘汰策略
獲取當(dāng)前內(nèi)存淘汰策略:
127.0.0.1:6379> config get maxmemory-policy
通過配置文件設(shè)置淘汰策略(修改redis.conf文件):
maxmemory-policy allkeys-lru
通過命令修改淘汰策略:
127.0.0.1:6379> config set maxmemory-policy allkeys-lru
LRU算法
什么是LRU?
上面說到了Redis可使用最大內(nèi)存使用完了,是可以使用LRU算法進(jìn)行內(nèi)存淘汰的,那么什么是LRU算法呢?
LRU(Least Recently Used),即最近最少使用,是一種緩存置換算法。在使用內(nèi)存作為緩存的時(shí)候,緩存的大小一般是固定的。當(dāng)緩存被占滿,這個(gè)時(shí)候繼續(xù)往緩存里面添加數(shù)據(jù),就需要淘汰一部分老的數(shù)據(jù),釋放內(nèi)存空間用來存儲(chǔ)新的數(shù)據(jù)。這個(gè)時(shí)候就可以使用LRU算法了。其核心思想是:如果一個(gè)數(shù)據(jù)在最近一段時(shí)間沒有被用到,那么將來被使用到的可能性也很小,所以就可以被淘汰掉。
使用java實(shí)現(xiàn)一個(gè)簡單的LRU算法
public class LRUCache<k, v> {//容量private int capacity;//當(dāng)前有多少節(jié)點(diǎn)的統(tǒng)計(jì)private int count;//緩存節(jié)點(diǎn)private Map<k, Node<k, v>> nodeMap;private Node<k, v> head;private Node<k, v> tail;public LRUCache(int capacity) {if (capacity < 1) {throw new IllegalArgumentException(String.valueOf(capacity));}this.capacity = capacity;this.nodeMap = new HashMap<>();//初始化頭節(jié)點(diǎn)和尾節(jié)點(diǎn),利用哨兵模式減少判斷頭結(jié)點(diǎn)和尾節(jié)點(diǎn)為空的代碼Node headNode = new Node(null, null);Node tailNode = new Node(null, null);headNode.next = tailNode;tailNode.pre = headNode;this.head = headNode;this.tail = tailNode;}public void put(k key, v value) {Node<k, v> node = nodeMap.get(key);if (node == null) {if (count >= capacity) {//先移除一個(gè)節(jié)點(diǎn)removeNode();}node = new Node<>(key, value);//添加節(jié)點(diǎn)addNode(node);} else {//移動(dòng)節(jié)點(diǎn)到頭節(jié)點(diǎn)moveNodeToHead(node);}}public Node<k, v> get(k key) {Node<k, v> node = nodeMap.get(key);if (node != null) {moveNodeToHead(node);}return node;}private void removeNode() {Node node = tail.pre;//從鏈表里面移除removeFromList(node);nodeMap.remove(node.key);count--;}private void removeFromList(Node<k, v> node) {Node pre = node.pre;Node next = node.next;pre.next = next;next.pre = pre;node.next = null;node.pre = null;}private void addNode(Node<k, v> node) {//添加節(jié)點(diǎn)到頭部addToHead(node);nodeMap.put(node.key, node);count++;}private void addToHead(Node<k, v> node) {Node next = head.next;next.pre = node;node.next = next;node.pre = head;head.next = node;}public void moveNodeToHead(Node<k, v> node) {//從鏈表里面移除removeFromList(node);//添加節(jié)點(diǎn)到頭部addToHead(node);}class Node<k, v> {k key;v value;Node pre;Node next;public Node(k key, v value) {this.key = key;this.value = value;}}}
上面這段代碼實(shí)現(xiàn)了一個(gè)簡單的LUR算法,代碼很簡單,也加了注釋,仔細(xì)看一下很容易就看懂。
LRU在Redis中的實(shí)現(xiàn)
近似LRU算法
Redis使用的是近似LRU算法,它跟常規(guī)的LRU算法還不太一樣。近似LRU算法通過隨機(jī)采樣法淘汰數(shù)據(jù),每次隨機(jī)出5(默認(rèn))個(gè)key,從里面淘汰掉最近最少使用的key。
可以通過maxmemory-samples參數(shù)修改采樣數(shù)量:例:maxmemory-samples 10 maxmenory-samples配置的越大,淘汰的結(jié)果越接近于嚴(yán)格的LRU算法
Redis為了實(shí)現(xiàn)近似LRU算法,給每個(gè)key增加了一個(gè)額外增加了一個(gè)24bit的字段,用來存儲(chǔ)該key最后一次被訪問的時(shí)間。
Redis3.0對(duì)近似LRU的優(yōu)化
Redis3.0對(duì)近似LRU算法進(jìn)行了一些優(yōu)化。新算法會(huì)維護(hù)一個(gè)候選池(大小為16),池中的數(shù)據(jù)根據(jù)訪問時(shí)間進(jìn)行排序,第一次隨機(jī)選取的key都會(huì)放入池中,隨后每次隨機(jī)選取的key只有在訪問時(shí)間小于池中最小的時(shí)間才會(huì)放入池中,直到候選池被放滿。當(dāng)放滿后,如果有新的key需要放入,則將池中最后訪問時(shí)間最大(最近被訪問)的移除。
當(dāng)需要淘汰的時(shí)候,則直接從池中選取最近訪問時(shí)間最小(最久沒被訪問)的key淘汰掉就行。
LRU算法的對(duì)比
我們可以通過一個(gè)實(shí)驗(yàn)對(duì)比各LRU算法的準(zhǔn)確率,先往Redis里面添加一定數(shù)量的數(shù)據(jù)n,使Redis可用內(nèi)存用完,再往Redis里面添加n/2的新數(shù)據(jù),這個(gè)時(shí)候就需要淘汰掉一部分的數(shù)據(jù),如果按照嚴(yán)格的LRU算法,應(yīng)該淘汰掉的是最先加入的n/2的數(shù)據(jù)。生成如下各LRU算法的對(duì)比圖

你可以看到圖中有三種不同顏色的點(diǎn):
淺灰色是被淘汰的數(shù)據(jù)
灰色是沒有被淘汰掉的老數(shù)據(jù)
綠色是新加入的數(shù)據(jù)
我們能看到Redis3.0采樣數(shù)是10生成的圖最接近于嚴(yán)格的LRU。而同樣使用5個(gè)采樣數(shù),Redis3.0也要優(yōu)于Redis2.8。
LFU算法
LFU算法是Redis4.0里面新加的一種淘汰策略。它的全稱是Least Frequently Used,它的核心思想是根據(jù)key的最近被訪問的頻率進(jìn)行淘汰,很少被訪問的優(yōu)先被淘汰,被訪問的多的則被留下來。
LFU一共有兩種策略:
volatile-lfu:在設(shè)置了過期時(shí)間的key中使用LFU算法淘汰key
allkeys-lfu:在所有的key中使用LFU算法淘汰數(shù)據(jù)
設(shè)置使用這兩種淘汰策略跟前面講的一樣,不過要注意的一點(diǎn)是這兩周策略只能在Redis4.0及以上設(shè)置,如果在Redis4.0以下設(shè)置會(huì)報(bào)錯(cuò)
問題
最后,留一個(gè)小問題,可能有的人注意到了,我在文中并沒有解釋為什么Redis使用近似LRU算法而不使用準(zhǔn)確的LRU算法,可以在評(píng)論區(qū)給出你的答案,大家一起討論學(xué)習(xí)。
來源:https://tinyurl.com/y6qctca6
往 期 推 薦 1、 19 張圖讓你秒懂 Spring Cloud 全家桶!
2、 10 款牛哄哄的 Chrome 插件,你用了幾個(gè)?
3、 在 IntelliJ IDEA 中這樣使用 Git,賊方便了!
4、計(jì)算機(jī)時(shí)間到底是怎么來的?程序員必看的時(shí)間知識(shí)!
5、這些IDEA的優(yōu)化設(shè)置趕緊安排起來,效率提升杠杠的!
點(diǎn)分享
點(diǎn)收藏
點(diǎn)點(diǎn)贊
點(diǎn)在看





