Redis 內(nèi)存滿了怎么辦?

Redis占用內(nèi)存大小
Redis的內(nèi)存淘汰
LRU算法
LRU在Redis中的實現(xiàn)
LFU算法
問題
Redis占用內(nèi)存大小
1、通過配置文件配置
//設置Redis最大占用內(nèi)存大小為100M
maxmemory 100mb
redis的配置文件不一定使用的是安裝目錄下面的redis.conf文件,啟動redis服務的時候是可以傳一個參數(shù)指定redis的配置文件的
2、通過命令修改
//設置Redis最大占用內(nèi)存大小為100M
127.0.0.1:6379> config set maxmemory 100mb
//獲取設置的Redis能使用的最大內(nèi)存大小
127.0.0.1:6379> config get maxmemory
如果不設置最大內(nèi)存大小或者設置最大內(nèi)存大小為0,在64位操作系統(tǒng)下不限制內(nèi)存大小,在32位操作系統(tǒng)下最多使用3GB內(nèi)存
Redis的內(nèi)存淘汰
noeviction(默認策略):對于寫請求不再提供服務,直接返回錯誤(DEL請求和部分特殊請求除外)
allkeys-lru:從所有key中使用LRU算法進行淘汰
volatile-lru:從設置了過期時間的key中使用LRU算法進行淘汰
allkeys-random:從所有key中隨機淘汰數(shù)據(jù)
volatile-random:從設置了過期時間的key中隨機淘汰
volatile-ttl:在設置了過期時間的key中,根據(jù)key的過期時間進行淘汰,越早過期的越優(yōu)先被淘汰
當使用volatile-lru、volatile-random、volatile-ttl這三種策略時,如果沒有key可以被淘汰,則和noeviction一樣返回錯誤
如何獲取及設置內(nèi)存淘汰策略
127.0.0.1:6379> config get maxmemory-policy
maxmemory-policy allkeys-lru
127.0.0.1:6379> config set maxmemory-policy allkeys-lru
LRU算法
什么是LRU?
LRU(Least Recently Used),即最近最少使用,是一種緩存置換算法。 在使用內(nèi)存作為緩存的時候,緩存的大小一般是固定的。當緩存被占滿,這個時候繼續(xù)往緩存里面添加數(shù)據(jù),就需要淘汰一部分老的數(shù)據(jù),釋放內(nèi)存空間用來存儲新的數(shù)據(jù)。 這個時候就可以使用LRU算法了。其核心思想是:如果一個數(shù)據(jù)在最近一段時間沒有被用到,那么將來被使用到的可能性也很小,所以就可以被淘汰掉。
使用java實現(xiàn)一個簡單的LRU算法
public class LRUCache<k, v> {
//容量
private int capacity;
//當前有多少節(jié)點的統(tǒng)計
private int count;
//緩存節(jié)點
private Map<k, node> nodeMap;
private Nodehead;
private Nodetail;
public LRUCache(int capacity) {
if (capacity < 1) {
throw new IllegalArgumentException(String.valueOf(capacity));
}
this.capacity = capacity;
this.nodeMap = new HashMap<>();
//初始化頭節(jié)點和尾節(jié)點,利用哨兵模式減少判斷頭結(jié)點和尾節(jié)點為空的代碼
Node headNode = new Node(null, null);
Node tailNode = new Node(null, null);
headNode.next = tailNode;
tailNode.pre = headNode;
this.head = headNode;
this.tail = tailNode;
}
public void put(k key, v value) {
Nodenode = nodeMap.get(key);
if (node == null) {
if (count >= capacity) {
//先移除一個節(jié)點
removeNode();
}
node = new Node<>(key, value);
//添加節(jié)點
addNode(node);
} else {
//移動節(jié)點到頭節(jié)點
moveNodeToHead(node);
}
}
public Nodeget(k key) {
Nodenode = nodeMap.get(key);
if (node != null) {
moveNodeToHead(node);
}
return node;
}
private void removeNode() {
Node node = tail.pre;
//從鏈表里面移除
removeFromList(node);
nodeMap.remove(node.key);
count--;
}
private void removeFromList(Nodenode) {
Node pre = node.pre;
Node next = node.next;
pre.next = next;
next.pre = pre;
node.next = null;
node.pre = null;
}
private void addNode(Nodenode) {
//添加節(jié)點到頭部
addToHead(node);
nodeMap.put(node.key, node);
count++;
}
private void addToHead(Nodenode) {
Node next = head.next;
next.pre = node;
node.next = next;
node.pre = head;
head.next = node;
}
public void moveNodeToHead(Nodenode) {
//從鏈表里面移除
removeFromList(node);
//添加節(jié)點到頭部
addToHead(node);
}
class Node<k, v> {
k key;
v value;
Node pre;
Node next;
public Node(k key, v value) {
this.key = key;
this.value = value;
}
}
}
上面這段代碼實現(xiàn)了一個簡單的LUR算法,代碼很簡單,也加了注釋,仔細看一下很容易就看懂。
LRU在Redis中的實現(xiàn)
近似LRU算法
可以通過maxmemory-samples參數(shù)修改采樣數(shù)量:例:maxmemory-samples 10 maxmenory-samples配置的越大,淘汰的結(jié)果越接近于嚴格的LRU算法
Redis3.0對近似LRU的優(yōu)化
LRU算法的對比
淺灰色是被淘汰的數(shù)據(jù)
灰色是沒有被淘汰掉的老數(shù)據(jù)
綠色是新加入的數(shù)據(jù)
LFU算法
volatile-lfu:在設置了過期時間的key中使用LFU算法淘汰key
allkeys-lfu:在所有的key中使用LFU算法淘汰數(shù)據(jù)
設置使用這兩種淘汰策略跟前面講的一樣,不過要注意的一點是這兩周策略只能在Redis4.0及以上設置,如果在Redis4.0以下設置會報錯
問題
歡迎關注“Java引導者”,我們分享最有價值的Java的干貨文章,助力您成為有思想的Java開發(fā)工程師!
評論
圖片
表情
