<kbd id="afajh"><form id="afajh"></form></kbd>
<strong id="afajh"><dl id="afajh"></dl></strong>
    <del id="afajh"><form id="afajh"></form></del>
        1. <th id="afajh"><progress id="afajh"></progress></th>
          <b id="afajh"><abbr id="afajh"></abbr></b>
          <th id="afajh"><progress id="afajh"></progress></th>

          神經(jīng)網(wǎng)絡(luò)調(diào)參技巧:warmup策略

          共 8255字,需瀏覽 17分鐘

           ·

          2022-06-12 15:07

          本文來源:煉丹筆記
          有一些論文對warmup進行了討論,使用 SGD 訓練神經(jīng)網(wǎng)絡(luò)時,在初始使用較大學習率而后期改為較小學習率在各種任務場景下都是一種廣為使用的做法,在實踐中效果好且最近也有若干文章嘗試對其進行了理論解釋。例如《On Layer Normalization in the Transformer Architecture》等,論文中作者發(fā)現(xiàn)Post-LN Transformer在訓練的初始階段,輸出層附近的期望梯度非常大,所以沒有warm-up的話模型優(yōu)化過程就會非常不穩(wěn)定。
          雖然在實踐中效果好且最近也有若干文章嘗試對其進行了理論解釋,但到底為何有效,目前還沒有被充分證明。

          01

          Transformer中的Warmup
          Transformer中的warm-up可以看作學習率 lr 隨迭代數(shù) t 的函數(shù):
          學習率 lr 會以某種方式遞減,學習率從0開始增長,經(jīng)過 Twarmup 次迭代達到最大。論文中對Adam,SGD等有無warmup做了實驗,
          可以看到,warmup增加了訓練時間,同時在最初階段使用較大的學習率會導致Loss偏大,對模型的訓練的影響是巨大的。warmup在這里對SGD是非常重要的。

          02

          Rectified Adam
          Rectified Adam針對warmup前期數(shù)據(jù)樣本不足導致的biased variance的問題提出了解決方案,論文中實驗結(jié)果看到還是有一定效果的。RAdam 由隨機初始化帶來的 Variance 比較小。即使隔離掉 warmup 部分的影響后Variance 也是要比 Adam 小的。

          03

          Warmup代碼
          class AdamWarmup(Optimizer):
          def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, warmup = 0): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, warmup = warmup) super(AdamW, self).__init__(params, defaults)
          def __setstate__(self, state): super(AdamW, self).__setstate__(state)
          def step(self, closure=None): loss = None if closure is not None: loss = closure()
          for group in self.param_groups:
          for p in group['params']: if p.grad is None: continue grad = p.grad.data.float() if grad.is_sparse: raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead')
          p_data_fp32 = p.data.float()
          state = self.state[p]
          if len(state) == 0: state['step'] = 0 state['exp_avg'] = torch.zeros_like(p_data_fp32) state['exp_avg_sq'] = torch.zeros_like(p_data_fp32) else: state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32) state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32)
          exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] beta1, beta2 = group['betas']
          state['step'] += 1
          exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) exp_avg.mul_(beta1).add_(1 - beta1, grad)
          denom = exp_avg_sq.sqrt().add_(group['eps']) bias_correction1 = 1 - beta1 ** state['step'] bias_correction2 = 1 - beta2 ** state['step'] if group['warmup'] > state['step']: scheduled_lr = 1e-8 + state['step'] * group['lr'] / group['warmup'] else: scheduled_lr = group['lr']
          step_size = scheduled_lr * math.sqrt(bias_correction2) / bias_correction1 if group['weight_decay'] != 0: p_data_fp32.add_(-group['weight_decay'] * scheduled_lr, p_data_fp32)
          p_data_fp32.addcdiv_(-step_size, exp_avg, denom)
          p.data.copy_(p_data_fp32)
          return loss

          04

          RAdam代碼
          import mathimport torchfrom torch.optim.optimizer import Optimizer, required
          class RAdam(Optimizer):
          def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, degenerated_to_sgd=False): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) self.degenerated_to_sgd = degenerated_to_sgd if isinstance(params, (list, tuple)) and len(params) > 0 and isinstance(params[0], dict): for param in params: if 'betas' in param and (param['betas'][0] != betas[0] or param['betas'][1] != betas[1]): param['buffer'] = [[None, None, None] for _ in range(10)] defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, buffer=[[None, None, None] for _ in range(10)]) super(RAdam, self).__init__(params, defaults)
          def __setstate__(self, state): super(RAdam, self).__setstate__(state)
          def step(self, closure=None):
          loss = None if closure is not None: loss = closure()
          for group in self.param_groups:
          for p in group['params']: if p.grad is None: continue grad = p.grad.data.float() if grad.is_sparse: raise RuntimeError('RAdam does not support sparse gradients')
          p_data_fp32 = p.data.float()
          state = self.state[p]
          if len(state) == 0: state['step'] = 0 state['exp_avg'] = torch.zeros_like(p_data_fp32) state['exp_avg_sq'] = torch.zeros_like(p_data_fp32) else: state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32) state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32)
          exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] beta1, beta2 = group['betas']
          exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) exp_avg.mul_(beta1).add_(1 - beta1, grad)
          state['step'] += 1 buffered = group['buffer'][int(state['step'] % 10)] if state['step'] == buffered[0]: N_sma, step_size = buffered[1], buffered[2] else: buffered[0] = state['step'] beta2_t = beta2 ** state['step'] N_sma_max = 2 / (1 - beta2) - 1 N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t) buffered[1] = N_sma
          # more conservative since it's an approximated value if N_sma >= 5: step_size = math.sqrt((1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / (N_sma_max - 2)) / (1 - beta1 ** state['step']) elif self.degenerated_to_sgd: step_size = 1.0 / (1 - beta1 ** state['step']) else: step_size = -1 buffered[2] = step_size
          # more conservative since it's an approximated value if N_sma >= 5: if group['weight_decay'] != 0: p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32) denom = exp_avg_sq.sqrt().add_(group['eps']) p_data_fp32.addcdiv_(-step_size * group['lr'], exp_avg, denom) p.data.copy_(p_data_fp32) elif step_size > 0: if group['weight_decay'] != 0: p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32) p_data_fp32.add_(-step_size * group['lr'], exp_avg) p.data.copy_(p_data_fp32)
          return loss
          參考資料
          https://openreview.net/attachment?id=B1x8anVFPr&name=original_pdf
          https://arxiv.org/pdf/1603.05027.pdf
          https://github.com/LiyuanLucasLiu/RAdam
          https://www.zhihu.com/question/340834465/answer/791466806
          https://arxiv.org/abs/1908.03265v1

          猜您喜歡:

           戳我,查看GAN的系列專輯~!
          一頓午飯外賣,成為CV視覺前沿弄潮兒!
          CVPR 2022 | 25+方向、最新50篇GAN論文
           ICCV 2021 | 35個主題GAN論文匯總
          超110篇!CVPR 2021最全GAN論文梳理
          超100篇!CVPR 2020最全GAN論文梳理

          拆解組新的GAN:解耦表征MixNMatch

          StarGAN第2版:多域多樣性圖像生成

          附下載 | 《可解釋的機器學習》中文版

          附下載 |《TensorFlow 2.0 深度學習算法實戰(zhàn)》

          附下載 |《計算機視覺中的數(shù)學方法》分享

          《基于深度學習的表面缺陷檢測方法綜述》

          《零樣本圖像分類綜述: 十年進展》

          《基于深度神經(jīng)網(wǎng)絡(luò)的少樣本學習綜述》

          瀏覽 165
          點贊
          評論
          收藏
          分享

          手機掃一掃分享

          分享
          舉報
          評論
          圖片
          表情
          推薦
          點贊
          評論
          收藏
          分享

          手機掃一掃分享

          分享
          舉報
          <kbd id="afajh"><form id="afajh"></form></kbd>
          <strong id="afajh"><dl id="afajh"></dl></strong>
            <del id="afajh"><form id="afajh"></form></del>
                1. <th id="afajh"><progress id="afajh"></progress></th>
                  <b id="afajh"><abbr id="afajh"></abbr></b>
                  <th id="afajh"><progress id="afajh"></progress></th>
                  一级女婬片A片AAAA片 | 91操B | 自拍偷拍2 | 一本大道一区二区三区 | 天天色天天干天天狠 |