<kbd id="afajh"><form id="afajh"></form></kbd>
<strong id="afajh"><dl id="afajh"></dl></strong>
    <del id="afajh"><form id="afajh"></form></del>
        1. <th id="afajh"><progress id="afajh"></progress></th>
          <b id="afajh"><abbr id="afajh"></abbr></b>
          <th id="afajh"><progress id="afajh"></progress></th>

          【推薦系統(tǒng)】AAAI2022推薦系統(tǒng)論文集錦

          共 3097字,需瀏覽 7分鐘

           ·

          2022-01-23 18:55


          2022年第36屆人工智能頂級會議AAAI論文列表已經(jīng)放出,此次會議共收到9251篇論文提交,其中9020篇論文被審稿。最終錄取篇數(shù)為1349篇,錄取率為可憐的15%由于境外疫情形勢依然嚴峻,大會將在2月22日到3月1日在線上進行舉辦。

          較之歷年接受率來說,今年的錄取率可以說是斷崖式下跌。下圖對2017年至今年的投稿量以及接受率進行了可視化,可以說今年的投稿量之多與接受率之低形成了鮮明的對比。

          關(guān)于對頂級會議歷年論文的分析與整理可點擊下方鏈接:
          與往年的慣例相同,我們分析了今年接收論文的標題,可以發(fā)現(xiàn)以下結(jié)論:
          • 深度學(xué)習(xí)技術(shù)仍然是比較火熱的技術(shù)之一;

          • 對圖數(shù)據(jù)的研究依然是大家關(guān)注的數(shù)據(jù)形式之一;

          • 自監(jiān)督學(xué)習(xí)、半監(jiān)督學(xué)習(xí)、多智能體、表示學(xué)習(xí)是大家主要使用的學(xué)習(xí)范式;

          • 機器學(xué)習(xí)應(yīng)用如目標檢測、文本分類、語義分割等是目前大家比較關(guān)注的方向。

          完整版清單可從官網(wǎng)下載查看。

          https://aaai.org/Conferences/AAAI-22/wp-content/uploads/2021/12/AAAI-22_Accepted_Paper_List_Main_Technical_Track.pdf

          接下來,特意從1349篇論文中篩選出與推薦系統(tǒng)相關(guān)的15篇文章供大家欣賞(去年的推薦系統(tǒng)論文文章的比例為33/1692),提前領(lǐng)略學(xué)術(shù)前沿趨勢與牛人的最新想法。

          1. Meta-Learning for Online Update of Recommender Systems

          Minseok Kim, Hwanjun Song, Yooju Shin, Dongmin Park, Kijung Shin, Jae-Gil Lee

          https://minseokkim.net/publication/2022melon_aaai/2022melon_aaai.pdf

          2.?DiPS: Differentiable Policy for Sketching in Recommender Systems

          Aritra Ghosh, Saayan Mitra, Andrew Lan

          https://arxiv.org/pdf/2112.07616

          3.?Low-pass Graph Convolutional Network for Recommendation

          Wenhui Yu, Zixin Zhang, Zheng Qin

          4.?Online certification of preference-based fairness for personalized recommender systems

          Virginie Do, Sam Corbett-Davies, Jamal Atif, Nicolas Usunier

          https://arxiv.org/pdf/2104.14527

          5.?Modeling Attrition in Recommender Systems with Departing Bandits

          Omer Ben-Porat, Lee Cohen, Liu Leqi, Zachary Lipton, Yishay Mansour

          6.?A Dynamic Meta-Learning Model for Time-Sensitive Cold-Start Recommendations

          Krishna P Neupane, Ervine Zheng, Yu Kong, Qi Yu

          7.?Context Uncertainty in Contextual Bandits with Applications to Recommender Systems

          Hao Wang, Yifei Ma, Hao Ding, Yuyang Wan

          8.?Multi-view Intent Disentangle Graph Networks for Bundle Recommendation

          Sen Zhao, Wei Wei, Ding Zou, Xian-Ling Mao

          9.?SMINet: State-Aware Multi-Aspect Interests Representation Network for Cold-Start Users Recommendation

          Wanjie Tao, Yu Li, Liangyue Li, Zulong Chen, Hong Wen, Peilin Chen, Tingting Liang, Quan Lu

          10.?Leaping Through Time with Gradient-based Adaptation for Recommendation

          Nuttapong Chairatanakul, Hoang NT, Xin Liu, Tsuyoshi Murata

          https://arxiv.org/pdf/2112.05914

          11.?Cross-Task Knowledge Distillation in Multi-Task Recommendation

          Chenxiao Yang, Junwei Pan, Xiaofeng Gao, Tingyu Jiang, Dapeng Liu, Guihai Chen

          12.?FPAdaMetric: False-positive-aware Adaptive Metric Learning for Session-based Recommendation

          Jongwon Jeong, Jeong Choi, Hyunsouk Cho, Sehee Chung

          13.?Offline Interactive Recommendation with Natural-Language Feedback

          Ruiyi Zhang, Tong Yu, Yilin Shen, Hongxia Jin

          14.?Learning the Optimal Recommendation from Explorative Users

          Fan Yao, Chuanhao Li, Denis Nekipelov, Hongning Wang, Haifeng Xu

          https://arxiv.org/pdf/2110.03068

          15.?Obtaining Calibrated Probabilities with Personalized Ranking Models

          Wonbin Kweon, SeongKu Kang, Hwanjo Yu

          通過整理發(fā)現(xiàn),此次會議接收的推薦系統(tǒng)相關(guān)論文主要涉及基于元學(xué)習(xí)的推薦系統(tǒng)2篇,序列化推薦5篇,基于強化學(xué)習(xí)的推薦系統(tǒng)4篇以及冷啟動推薦2篇。

          往期精彩回顧




          瀏覽 65
          點贊
          評論
          收藏
          分享

          手機掃一掃分享

          分享
          舉報
          評論
          圖片
          表情
          推薦
          點贊
          評論
          收藏
          分享

          手機掃一掃分享

          分享
          舉報
          <kbd id="afajh"><form id="afajh"></form></kbd>
          <strong id="afajh"><dl id="afajh"></dl></strong>
            <del id="afajh"><form id="afajh"></form></del>
                1. <th id="afajh"><progress id="afajh"></progress></th>
                  <b id="afajh"><abbr id="afajh"></abbr></b>
                  <th id="afajh"><progress id="afajh"></progress></th>
                  免费一级电影网 | 成人少妇AV | 无码操逼动漫 | 日本二级黄免费在线观看 | 一级成人毛片 |