<kbd id="afajh"><form id="afajh"></form></kbd>
<strong id="afajh"><dl id="afajh"></dl></strong>
    <del id="afajh"><form id="afajh"></form></del>
        1. <th id="afajh"><progress id="afajh"></progress></th>
          <b id="afajh"><abbr id="afajh"></abbr></b>
          <th id="afajh"><progress id="afajh"></progress></th>

          10年內(nèi)猝死風(fēng)險(xiǎn)有多大?首個(gè)神經(jīng)網(wǎng)絡(luò)算法告訴你

          共 1689字,需瀏覽 4分鐘

           ·

          2022-04-18 00:15

          大數(shù)據(jù)文摘轉(zhuǎn)載自學(xué)術(shù)頭條


          當(dāng)前,心源性猝死(SCD)仍然是全球死亡的主要原因,在歐洲和北美的普通人群中,每 100,000 人中的發(fā)病率為 50-100 人,占所有死亡人數(shù)的 15-20%?。而冠狀動(dòng)脈疾病患者發(fā)生心律失常性心源性猝死(SCDA)的風(fēng)險(xiǎn)最高。

          因此,迫切需要開發(fā)個(gè)性化、準(zhǔn)確和具有成本效益的心律失常風(fēng)險(xiǎn)評估工具,以減輕這一巨大的公共衛(wèi)生和經(jīng)濟(jì)負(fù)擔(dān)。

          近日,約翰霍普金斯大學(xué)研究人員領(lǐng)導(dǎo)的團(tuán)隊(duì),開發(fā)了一種基于人工智能的新方法,可以比醫(yī)生更準(zhǔn)確地預(yù)測患者是否以及何時(shí)可能死于心臟驟停。該技術(shù)以患者心臟影像學(xué)資料以及其它背景為基礎(chǔ),將徹底改變臨床決策并提高突發(fā)性和致命性心律失常的存活率。


          相關(guān)研究發(fā)表在近日的《自然心血管研究》上。



          論文通訊作者、生物醫(yī)學(xué)工程教授 Natalia Trayanova 表示, “由心律失常引起的心源性猝死,占全球所有死亡人數(shù)的 20%,但我們對它發(fā)生的原因或如何判斷誰處于危險(xiǎn)中知之甚少。有些患者心源性猝死的風(fēng)險(xiǎn)可能較低,可能不需要使用自動(dòng)體外除顫器(AED),而有些高風(fēng)險(xiǎn)患者如果沒有及時(shí)得到他們需要的治療,可能會在他們生命的黃金時(shí)期死亡。我們的算法可以做的是,確定誰有心臟死亡的風(fēng)險(xiǎn),以及何時(shí)發(fā)生,進(jìn)而讓醫(yī)生準(zhǔn)確地決定需要做什么?!?br>
          據(jù)了解,這也是第一個(gè)使用神經(jīng)網(wǎng)絡(luò)為每位心臟病患者建立個(gè)性化生存評估的團(tuán)隊(duì)。這些風(fēng)險(xiǎn)測量提供了 10 年內(nèi)心源性猝死的高準(zhǔn)確度,以及最有可能發(fā)生的時(shí)間。

          研究人員為這種基于深度學(xué)習(xí)技術(shù)的工具起了個(gè)名字,叫做心律失常風(fēng)險(xiǎn)生存研究(Survival Study of Cardiac Arrhythmia Risk,SSCAR)。



          圖 | SSCAR 示意圖(來源:Nature)


          在當(dāng)前的臨床心臟圖像分析中,醫(yī)生僅提取簡單的疤痕特征,如體積和質(zhì)量,并未充分利用相關(guān)圖像中的關(guān)鍵數(shù)據(jù)。

          “這些圖像帶有醫(yī)生無法訪問的關(guān)鍵信息,”第一作者、前約翰霍普金斯大學(xué)博士生 Dan Popescu 說, “這種瘢痕可以以不同的方式分布,它說明了患者的生存機(jī)會。只不過其中的信息被隱藏了。”

          為此,研究團(tuán)隊(duì)首先使用對比度增強(qiáng)的心臟磁共振圖像,來可視化約翰霍普金斯醫(yī)院 156 名心臟磁心肌病真實(shí)患者的瘢痕分布,以訓(xùn)練一種算法來檢測肉眼不可見的模式和關(guān)系。


          圖 | SSCAR 在紅色圈出的心臟中檢測到高風(fēng)險(xiǎn)(來源:約翰霍普金斯大學(xué))


          研究小組還使用十年的標(biāo)準(zhǔn)臨床患者數(shù)據(jù)訓(xùn)練了第二個(gè)神經(jīng)網(wǎng)絡(luò),患者數(shù)據(jù)包括年齡、體重、種族和處方藥使用等 22 個(gè)因素。

          然后使用深度神經(jīng)網(wǎng)絡(luò)直接從 CMR 圖像和臨床因素中學(xué)習(xí)這些參數(shù),從而對生存數(shù)據(jù)進(jìn)行最佳建模,產(chǎn)生高度個(gè)性化的生存概率預(yù)測,并得到患者的特異性生存曲線。

          之后,研究人員在來自美國 60 個(gè)醫(yī)療中心的獨(dú)立患者隊(duì)列的測試中得到驗(yàn)證,這些患者具有不同的心臟病史和不同的成像數(shù)據(jù),結(jié)果表明,算法的預(yù)測比醫(yī)生準(zhǔn)確得多,而且在結(jié)果表明該系統(tǒng)可以被廣泛應(yīng)用在任何地方。

          值得注意的是,SSCAR 中使用的定制神經(jīng)網(wǎng)絡(luò)的整體設(shè)計(jì)中,采取了多個(gè)步驟來確保結(jié)果特征的相關(guān)性和可解釋性。人工智能算法的可解釋性對其廣泛應(yīng)用至關(guān)重要,圍繞它的擔(dān)憂在醫(yī)療保健領(lǐng)域尤為普遍。

          心血管診斷和治療創(chuàng)新聯(lián)盟聯(lián)合主任 Trayanova 說:“這有可能顯著影響有關(guān)心律失常風(fēng)險(xiǎn)的臨床決策,并且代表著將患者軌跡預(yù)測帶入人工智能時(shí)代的重要一步。它體現(xiàn)了將人工智能、工程學(xué)和醫(yī)學(xué)融合為醫(yī)療保健未來的趨勢?!?br>
          該團(tuán)隊(duì)當(dāng)前正在努力構(gòu)建算法來檢測其他類型的心臟病。根據(jù) Trayanova 的說法,還可以為依賴視覺診斷的其他醫(yī)學(xué)領(lǐng)域開發(fā)深度學(xué)習(xí)概念。

          參考資料:
          https://www-nature-com-443.webvpn.bjmu.edu.cn/articles/s44161-022-00041-9
          https://hub.jhu.edu/2022/04/07/trayanova-artificial-intelligence-cardiac-arrhythmia/



          點(diǎn)「在看」的人都變好看了哦!
          瀏覽 58
          點(diǎn)贊
          評論
          收藏
          分享

          手機(jī)掃一掃分享

          分享
          舉報(bào)
          評論
          圖片
          表情
          推薦
          點(diǎn)贊
          評論
          收藏
          分享

          手機(jī)掃一掃分享

          分享
          舉報(bào)
          <kbd id="afajh"><form id="afajh"></form></kbd>
          <strong id="afajh"><dl id="afajh"></dl></strong>
            <del id="afajh"><form id="afajh"></form></del>
                1. <th id="afajh"><progress id="afajh"></progress></th>
                  <b id="afajh"><abbr id="afajh"></abbr></b>
                  <th id="afajh"><progress id="afajh"></progress></th>
                  免费乱伦网站 | 欧美一级日韩一级 | 免费看黄片的网站 | 一本视频无码视频 | 中国黄色操逼大片 |