<kbd id="afajh"><form id="afajh"></form></kbd>
<strong id="afajh"><dl id="afajh"></dl></strong>
    <del id="afajh"><form id="afajh"></form></del>
        1. <th id="afajh"><progress id="afajh"></progress></th>
          <b id="afajh"><abbr id="afajh"></abbr></b>
          <th id="afajh"><progress id="afajh"></progress></th>

          應(yīng)用實例 | 手把手教你用OpenCV實現(xiàn)餐盤水果識別計價程序(附代碼)

          共 8993字,需瀏覽 18分鐘

           ·

          2021-07-08 20:38

          導(dǎo)讀
          本文主要介紹使用Python-OpenCV實現(xiàn)餐盤水果識別與計價的應(yīng)用。

          測試圖像與說明

          使用圖像如下,拍攝環(huán)境有待改善(存在光照不均和拍攝角度的影響):

          餐盤/菜品識別一般方法:

          (1)識別餐盤---傳統(tǒng)方法和機器學(xué)習(xí)/深度學(xué)習(xí)方法;

          (2)識別菜品---機器學(xué)習(xí)/深度學(xué)習(xí)方法;

          本文使用傳統(tǒng)方法識別餐盤。

          效果演示:


          算法思路與實現(xiàn)步驟


          思路:傳統(tǒng)方法識別餐盤---依據(jù)顏色和形狀來區(qū)分。

          具體步驟:

          (1)餐盤顏色共三種:白色、綠色、橙色,形狀共兩種:圓形和方形。區(qū)別顏色使用HSV閾值范圍篩選即可,圓形與方形通過輪廓面積與輪廓最小外接圓面積的比值來篩選,圓形rate>=0.9,方形<0.9;

          (2)水果共三種:蘋果、香蕉、橙子,通過顏色可以區(qū)分蘋果和橙子,通過輪廓最小外接矩形的寬高比可以區(qū)分香蕉和橙子;

          (3)計價:盤子和水果的數(shù)量乘以對應(yīng)的單價即可;

          (4)設(shè)計UI,計價時顯示收款碼。

          Python-OpenCV實現(xiàn)算法核心代碼與效果如下:


          def Recognize_Dish(self,img):  #-------------------香蕉檢測-----------------#  banana_num = 0  hsv_img=cv2.cvtColor(img,cv2.COLOR_BGR2HSV)  lower_yellow = np.array([15,30,145])#顏色范圍低閾值  upper_yellow = np.array([35,255,255])#顏色范圍高閾值  mask = cv2.inRange(hsv_img,lower_yellow,upper_yellow)#根據(jù)顏色范圍刪選  mask = cv2.medianBlur(mask, 5)#中值濾波  #cv2.imshow('mask_banana', mask)  contours,hierarchy = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)  for cnt in contours:    rect = cv2.minAreaRect(cnt)    box = cv2.boxPoints(rect)    box = np.int0(box)    width = max(rect[1][0],rect[1][1])    height = min(rect[1][0],rect[1][1])    center = (int(rect[0][0]),int(rect[0][1]))    if width > 180 and height > 80 and height < 130:      #print(width,height)      img = cv2.drawContours(img,[box],0,(0,0,255),2)      cv2.putText(img,'banana',center,font,1,(255,0,255), 2)      banana_num += 1  item_0 = QTableWidgetItem("%d"%banana_num)  self.tableWidget.setItem(8, 0, item_0)
          #-------------------蘋果檢測-----------------# apple_num = 0 lower_apple = np.array([0,50,50])#顏色范圍低閾值 upper_apple = np.array([30,255,255])#顏色范圍高閾值 mask_apple = cv2.inRange(hsv_img,lower_apple,upper_apple)#根據(jù)顏色范圍刪選 mask_apple = cv2.medianBlur(mask_apple, 9)#中值濾波 #cv2.imshow('mask_apple', mask_apple) #cv2.imwrite('mask_apple.jpg', mask_apple) contours2,hierarchy2 = cv2.findContours(mask_apple, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) for cnt2 in contours2: center,radius = cv2.minEnclosingCircle(cnt2) area = cv2.contourArea(cnt2) #print(radius) rate = area / (math.pi * radius *radius) if radius > 50 and radius < 75 and rate < 0.91: #print(radius) cv2.circle(img,(int(center[0]),int(center[1])),int(radius),(0,255,0),2) cv2.putText(img,'apple',(int(center[0]),int(center[1])),font,1,(255,0,0), 2) apple_num += 1 item_1 = QTableWidgetItem("%d"%apple_num) self.tableWidget.setItem(6, 0, item_1)
          #-------------------橘子檢測-----------------# orange_num = 0 lower_orange = np.array([0,90,60])#顏色范圍低閾值 upper_orange = np.array([60,255,255])#顏色范圍高閾值 mask_orange = cv2.inRange(hsv_img,lower_orange,upper_orange)#根據(jù)顏色范圍刪選 mask_orange = cv2.medianBlur(mask_orange, 5)#中值濾波 #cv2.imshow('mask_orange', mask_orange) #cv2.imwrite('mask_orange.jpg', mask_orange) contours3,hierarchy3 = cv2.findContours(mask_orange, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) for cnt3 in contours3: center,radius = cv2.minEnclosingCircle(cnt3) area = cv2.contourArea(cnt3) #print(radius) rate = area / (math.pi * radius *radius) if radius > 50 and radius < 75 and rate > 0.85: #print(radius) cv2.circle(img,(int(center[0]),int(center[1])),int(radius),(255,0,255),2) cv2.putText(img,'orange',(int(center[0]),int(center[1])),font,1,(255,255,0), 2) orange_num += 1 item_2 = QTableWidgetItem("%d"%orange_num) self.tableWidget.setItem(7, 0, item_2)
          #-------------------白色餐盤檢測-----------------# white_circle_num = 0 white_rect_num = 0 lower_white = np.array([0,0,150])#顏色范圍低閾值 upper_white= np.array([100,55,255])#顏色范圍高閾值 mask_white = cv2.inRange(hsv_img,lower_white,upper_white)#根據(jù)顏色范圍刪選 mask_white = cv2.medianBlur(mask_white, 5)#中值濾波 #cv2.imshow('mask_white', mask_white) #cv2.imwrite('mask_white.jpg', mask_white) contours4,hierarchy4 = cv2.findContours(mask_white, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) for cnt4 in contours4: area = cv2.contourArea(cnt4) center,radius = cv2.minEnclosingCircle(cnt4) #print(radius) rate = area / (math.pi * radius *radius) if radius > 100 and radius < 160: #print(radius) if rate >= 0.9: cv2.circle(img,(int(center[0]),int(center[1])),int(radius),(255,255,0),2) cv2.putText(img,'white_circle',(int(center[0]),int(center[1])),font,1,(0,255,0), 2) white_circle_num += 1 elif rate >0.6 and rate < 0.9: rect = cv2.minAreaRect(cnt4) box = cv2.boxPoints(rect) box = np.int0(box) #cv2.circle(img,(int(center[0]),int(center[1])),int(radius),(255,0,255),5) img = cv2.drawContours(img,[box],0,(255,255,0),2) cv2.putText(img,'white_rect',(int(center[0]),int(center[1])),font,1,(0,255,0), 2) white_rect_num += 1 item_3 = QTableWidgetItem("%d"%white_circle_num) self.tableWidget.setItem(0, 0, item_3) item_4 = QTableWidgetItem("%d"%white_rect_num) self.tableWidget.setItem(1, 0, item_4)
          #-------------------綠色餐盤檢測-----------------# green_circle_num = 0 green_rect_num = 0 lower_green = np.array([30,65,65])#顏色范圍低閾值 upper_green= np.array([80,255,255])#顏色范圍高閾值 mask_green = cv2.inRange(hsv_img,lower_green,upper_green)#根據(jù)顏色范圍刪選 mask_green = cv2.medianBlur(mask_green, 5)#中值濾波 #cv2.imshow('mask_green', mask_green) #cv2.imwrite('mask_green.jpg', mask_green) contours5,hierarchy5 = cv2.findContours(mask_green, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) for cnt5 in contours5: area = cv2.contourArea(cnt5) center,radius = cv2.minEnclosingCircle(cnt5) #print(radius) rate = area / (math.pi * radius *radius) if radius > 100 and radius < 160: #print(radius) if rate >= 0.9: cv2.circle(img,(int(center[0]),int(center[1])),int(radius),(0,255,0),2) cv2.putText(img,'green_circle',(int(center[0]),int(center[1])),font,1,(0,255,255), 2) green_circle_num += 1 elif rate >0.6 and rate < 0.9: rect = cv2.minAreaRect(cnt5) box = cv2.boxPoints(rect) box = np.int0(box) #cv2.circle(img,(int(center[0]),int(center[1])),int(radius),(255,0,255),5) img = cv2.drawContours(img,[box],0,(0,255,0),2) cv2.putText(img,'green_rect',(int(center[0]),int(center[1])),font,1,(0,255,255), 2) green_rect_num += 1 item_5 = QTableWidgetItem("%d"%green_circle_num) self.tableWidget.setItem(4, 0, item_5) item_6 = QTableWidgetItem("%d"%green_rect_num) self.tableWidget.setItem(5, 0, item_6)
          #-------------------橙色餐盤檢測-----------------# orange_circle_num = 0 orange_rect_num = 0 lower_orange_dish = np.array([0,100,100])#顏色范圍低閾值 upper_orange_dish= np.array([15,255,255])#顏色范圍高閾值 mask_orange_dish = cv2.inRange(hsv_img,lower_orange_dish,upper_orange_dish)#根據(jù)顏色范圍刪選 mask_orange_dish = cv2.medianBlur(mask_orange_dish, 5)#中值濾波 #cv2.imshow('mask_green', mask_green) #cv2.imwrite('mask_orange_dish.jpg', mask_orange_dish) contours6,hierarchy6 = cv2.findContours(mask_orange_dish, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) for cnt6 in contours6: area = cv2.contourArea(cnt6) center,radius = cv2.minEnclosingCircle(cnt6) #print('----------------') #print(radius) rate = area / (math.pi * radius *radius) if radius > 100 and radius < 160: #print(rate) if rate >= 0.8: cv2.circle(img,(int(center[0]),int(center[1])),int(radius),(0,255,0),2) cv2.putText(img,'orange_circle',(int(center[0]),int(center[1])),font,1,(255,0,255), 2) orange_circle_num += 1 elif rate >0.3 and rate < 0.8: rect = cv2.minAreaRect(cnt6) box = cv2.boxPoints(rect) box = np.int0(box) #cv2.circle(img,(int(center[0]),int(center[1])),int(radius),(255,0,255),5) img = cv2.drawContours(img,[box],0,(0,255,0),2) cv2.putText(img,'orange_rect',(int(center[0]),int(center[1])),font,1,(255,0,255), 2) orange_rect_num += 1 item_7 = QTableWidgetItem("%d"%orange_circle_num) self.tableWidget.setItem(2, 0, item_7) item_8 = QTableWidgetItem("%d"%orange_rect_num) self.tableWidget.setItem(3, 0, item_8)
          for i in range(0,9): self.tableWidget.item(i,0).setTextAlignment(QtCore.Qt.AlignHCenter|QtCore.Qt.AlignVCenter) self.tableWidget.item(i,1).setTextAlignment(QtCore.Qt.AlignHCenter|QtCore.Qt.AlignVCenter) #----------------計算價格--------------# self.price = self.price_white_circle * white_circle_num + \ self.price_white_rect * white_rect_num + \ self.price_orange_circle * orange_circle_num + \ self.price_orange_rect * orange_rect_num + \ self.price_green_circle * green_circle_num + \ self.price_green_rect * green_rect_num + \ self.price_apple * apple_num + \ self.price_orange * orange_num +\ self.price_banana * banana_num print(self.price) return img


          結(jié)尾語

          (1) 算法只針對水果和餐盤數(shù)量和形態(tài)較少的情形,方法供參考;

          (2) 實際應(yīng)用將更復(fù)雜,要求更高,一般開源的目標(biāo)檢測網(wǎng)絡(luò)也很難滿足要求

          (3) 常見菜品識別的實際應(yīng)用要求:一個菜只用一張圖片訓(xùn)練或做模板,訓(xùn)練和識別時間盡量短,能夠及時更新使用。所以真正類似的產(chǎn)品并不好做,如果你有好的方法歡迎留言。

          —版權(quán)聲明—

          來源: OpenCV與AI深度學(xué)習(xí)

          僅用于學(xué)術(shù)分享,版權(quán)屬于原作者。

          若有侵權(quán),請聯(lián)系微信號:yiyang-sy 刪除或修改!


          —THE END—
          瀏覽 79
          點贊
          評論
          收藏
          分享

          手機掃一掃分享

          分享
          舉報
          評論
          圖片
          表情
          推薦
          點贊
          評論
          收藏
          分享

          手機掃一掃分享

          分享
          舉報
          <kbd id="afajh"><form id="afajh"></form></kbd>
          <strong id="afajh"><dl id="afajh"></dl></strong>
            <del id="afajh"><form id="afajh"></form></del>
                1. <th id="afajh"><progress id="afajh"></progress></th>
                  <b id="afajh"><abbr id="afajh"></abbr></b>
                  <th id="afajh"><progress id="afajh"></progress></th>
                  亚洲日韩AV无码专区影院 | 国产一级a毛一级a看免费视奥美 | 欧美日韩十八禁 | 毛片一区77 | 北条麻妃在线视频 |