【關(guān)于 BERT to TextCNN】那些你不知道的事

作者:楊夕
論文:Distilling Task-Specific Knowledge from BERT into Simple Neural Networks
論文地址:https://arxiv.org/abs/1903.12136
項(xiàng)目地址:https://github.com/km1994/nlp_paper_study
【注:手機(jī)閱讀可能圖片打不開?。?!】
一、動(dòng)機(jī)
隨著 BERT 的橫空出世,意味著 上一代用于語言理解的較淺的神經(jīng)網(wǎng)絡(luò)(RNN、CNN等) 的 過時(shí)?
BERT模型是真的大,計(jì)算起來太慢了?
是否可以將BERT(一種最先進(jìn)的語言表示模型)中的知識(shí)提取到一個(gè)單層BiLSTM 或 TextCNN 中?
二、論文思路
確定 Teacher 模型(Bert) 和 Student 模型(TextCNN、TextRNN);
蒸餾的兩個(gè)過程:
第一,在目標(biāo)函數(shù)附加logits回歸部分;
第二,構(gòu)建遷移數(shù)據(jù)集,從而增加了訓(xùn)練集,可以更有效地進(jìn)行知識(shí)遷移。
三、模型框架講解【以單句分類任務(wù)為例】
3.1 Teacher 模型(Bert) 微調(diào)
Bert 模型 模型構(gòu)建
構(gòu)建 Bert 模型,然后將 Bert 輸出的句子的向量表示過dense層和softmax層,得到logits輸出,代碼如下:
代碼實(shí)現(xiàn):
class BertClassification(BertPreTrainedModel):
def __init__(self, config, num_labels=2):
super(BertClassification, self).__init__(config)
self.num_labels = num_labels
self.bert = BertModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, num_labels)
self.init_weights()
def forward(self, input_ids, input_mask, label_ids):
_, pooled_output = self.bert(input_ids, None, input_mask)
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
if label_ids is not None:
loss_fct = CrossEntropyLoss()
return loss_fct(logits.view(-1, self.num_labels), label_ids.view(-1))
return logits
Bert 模型微調(diào)
代碼實(shí)現(xiàn):
def main(model_type="bert",bert_model='bert-base-chinese', cache_dir=None,
max_seq=128, batch_size=16, num_epochs=10, lr=2e-5):
processor = Processor()
train_examples = processor.get_train_examples('data/hotel')
label_list = processor.get_labels()
tokenizer = BertTokenizer.from_pretrained(bert_model, do_lower_case=True)
if model_type=="bert":
model = BertClassification.from_pretrained(bert_model, cache_dir=cache_dir, num_labels=len(label_list))
else:
model = BertTextCNN.from_pretrained(bert_model,cache_dir=cache_dir,num_labels=len(label_list))
model.to(device)
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not \
any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if \
any(nd in n for nd in no_decay)], 'weight_decay': 0.00}]
print('train...')
num_train_steps = int(len(train_examples) / batch_size * num_epochs)
optimizer = AdamW(optimizer_grouped_parameters, lr=lr)
train_features = convert_examples_to_features(train_examples, label_list, max_seq, tokenizer)
all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.long)
train_data = TensorDataset(all_input_ids, all_input_mask, all_label_ids)
train_sampler = RandomSampler(train_data)
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=batch_size)
model.train()
for _ in trange(num_epochs, desc='Epoch'):
tr_loss = 0
for step, batch in enumerate(tqdm(train_dataloader, desc='Iteration')):
input_ids, input_mask, label_ids = tuple(t.to(device) for t in batch)
loss = model(input_ids, input_mask, label_ids)
loss.backward()
optimizer.step()
optimizer.zero_grad()
tr_loss += loss.item()
print('tr_loss', tr_loss)
print('eval...')
eval_examples = processor.get_dev_examples('data/hotel')
eval_features = convert_examples_to_features(eval_examples, label_list, max_seq, tokenizer)
eval_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
eval_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
eval_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)
eval_data = TensorDataset(eval_input_ids, eval_input_mask, eval_label_ids)
eval_sampler = SequentialSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=batch_size)
model.eval()
preds = []
for batch in tqdm(eval_dataloader, desc='Evaluating'):
input_ids, input_mask, label_ids = tuple(t.to(device) for t in batch)
with torch.no_grad():
logits = model(input_ids, input_mask, None)
preds.append(logits.detach().cpu().numpy())
preds = np.argmax(np.vstack(preds), axis=1)
print(compute_metrics(preds, eval_label_ids.numpy()))
torch.save(model, f'data/cache/{model_type}_model')
3.2 Student 模型(TextCNN、TextRNN)構(gòu)建
3.2.1 TextRNN 模型構(gòu)建
模型結(jié)構(gòu):sentence -> Embedding Layer -> Word Embeddings -> BiLSTM -> Hidden States (Bidirection) -> dense -> Relu -> dense -> logits ->softmax
單句子分類的BiLSTM模型。標(biāo)簽分別是(a)輸入 emb,(b)BiLSTM,(c,d)向后和向前 hidden 狀態(tài),(e,g)全連接層,(e)帶ReLU,(f)隱藏表示,(h)logit outputs,(i)softmax 激活函數(shù),和(j)最終概率
代碼實(shí)現(xiàn):
class RNN(nn.Module):
def __init__(self, x_dim, e_dim, h_dim, o_dim):
super(RNN, self).__init__()
self.h_dim = h_dim
self.dropout = nn.Dropout(0.2)
self.emb = nn.Embedding(x_dim, e_dim, padding_idx=0)
self.lstm = nn.LSTM(e_dim, h_dim, bidirectional=True, batch_first=True)
self.fc = nn.Linear(h_dim * 2, o_dim)
self.softmax = nn.Softmax(dim=1)
self.log_softmax = nn.LogSoftmax(dim=1)
def forward(self, x, lens):
embed = self.dropout(self.emb(x))
out, _ = self.lstm(embed)
hidden = self.fc(out[:, -1, :])
return self.softmax(hidden), self.log_softmax(hidden)
3.2.2 TextCNN 模型構(gòu)建

模型結(jié)構(gòu):sentence -> Embedding Layer -> Word Embeddings -> dropout -> Conv -> Relu -> max_pool1d -> cat -> dropout -> dense -> logits ->softmax
代碼實(shí)現(xiàn):
class CNN(nn.Module):
def __init__(self, x_dim, e_dim, h_dim, o_dim):
super(CNN, self).__init__()
self.emb = nn.Embedding(x_dim, e_dim, padding_idx=0)
self.dropout = nn.Dropout(0.2)
self.conv1 = nn.Conv2d(1, h_dim, (3, e_dim))
self.conv2 = nn.Conv2d(1, h_dim, (4, e_dim))
self.conv3 = nn.Conv2d(1, h_dim, (5, e_dim))
self.fc = nn.Linear(h_dim * 3, o_dim)
self.softmax = nn.Softmax(dim=1)
self.log_softmax = nn.LogSoftmax(dim=1)
def forward(self, x, lens):
embed = self.dropout(self.emb(x)).unsqueeze(1)
c1 = torch.relu(self.conv1(embed).squeeze(3))
p1 = torch.max_pool1d(c1, c1.size()[2]).squeeze(2)
c2 = torch.relu(self.conv2(embed).squeeze(3))
p2 = torch.max_pool1d(c2, c2.size()[2]).squeeze(2)
c3 = torch.relu(self.conv3(embed).squeeze(3))
p3 = torch.max_pool1d(c3, c3.size()[2]).squeeze(2)
pool = self.dropout(torch.cat((p1, p2, p3), 1))
hidden = self.fc(pool)
return self.softmax(hidden), self.log_softmax(hidden)
3.3 Distillation Objective
在 3.1、3.2 節(jié),我們分別介紹了 Teacher 模型(Bert)和 Student 模型(TextCNN、TextRNN),那么現(xiàn)在問題來了:“如何 才能將 Teacher 模型 的知識(shí)遷移到Student 模型中呢?”
在 論文中,作者主要將 Teacher 模型的 logits 輸出作為 Student 模型的 Distillation Objective,通過這種方式 將 Teacher 模型 的知識(shí)遷移到 Student 模型中,公式如下所示:


Teacher 模型的 logits 輸出
class Teacher(object):
def __init__(self, bert_model='bert-base-chinese', max_seq=128):
self.max_seq = max_seq
self.tokenizer = BertTokenizer.from_pretrained(
bert_model, do_lower_case=True)
self.model = torch.load('./data/cache/model')
self.model.eval()
def predict(self, text):
tokens = self.tokenizer.tokenize(text)[:self.max_seq]
input_ids = self.tokenizer.convert_tokens_to_ids(tokens)
input_mask = [1] * len(input_ids)
padding = [0] * (self.max_seq - len(input_ids))
input_ids = torch.tensor([input_ids + padding], dtype=torch.long).to(device)
input_mask = torch.tensor([input_mask + padding], dtype=torch.long).to(device)
logits = self.model(input_ids, input_mask, None)
return F.softmax(logits, dim=1).detach().cpu().numpy()
Distillation目標(biāo)函數(shù)
model = RNN(v_size, 256, 256, 2)
# model = CNN(v_size,256,128,2)
if USE_CUDA: model = model.cuda()
opt = optim.Adam(model.parameters(), lr=lr)
ce_loss = nn.NLLLoss()
mse_loss = nn.MSELoss()
for epoch in range(epochs):
losses = []
accu = []
model.train()
for i in range(0, len(x_tr), b_size):
model.zero_grad()
bx = Variable(LTensor(x_tr[i:i + b_size]))
by = Variable(LTensor(y_tr[i:i + b_size]))
bl = Variable(LTensor(l_tr[i:i + b_size]))
bt = Variable(FTensor(t_tr[i:i + b_size]))
py1, py2 = model(bx, bl)
loss = alpha * ce_loss(py2, by) + (1-alpha) * mse_loss(py1, bt) # in paper, only mse is used
loss.backward()
opt.step()
losses.append(loss.item())
for i in range(0, len(x_de), b_size):
model.zero_grad()
bx = Variable(LTensor(x_de[i:i + b_size]))
bl = Variable(LTensor(l_de[i:i + b_size]))
bt = Variable(FTensor(t_de[i:i + b_size]))
py1, py2 = model(bx, bl)
loss = mse_loss(py1, bt)
if teach_on_dev:
loss.backward()
opt.step() # train only with teacher on dev set
losses.append(loss.item())
四、Data Augmentation for Distillation
動(dòng)機(jī):在上文中,我們介紹了 如何 將 Teacher 模型 的知識(shí)遷移到Student 模型中,但是對(duì)于小數(shù)據(jù)集而言,在 Distillation 過程中,容易出現(xiàn)無法完全表達(dá)大模型的知識(shí)問題,導(dǎo)致模型出現(xiàn)過擬合,那有沒有比較好的解決方法呢?
方法:數(shù)據(jù)增強(qiáng)。即 利用數(shù)據(jù)增強(qiáng)的方法認(rèn)為擴(kuò)充數(shù)據(jù)集,來防止過擬合
思路:
Masking:以一定的概率,用[MASK]標(biāo)簽來取代句子中的某個(gè)單詞;
POS-guided word replacement:以一定的概率,用同詞性的詞來取代當(dāng)前詞。根據(jù)原始訓(xùn)練集中同詞性詞語的詞頻來確定取代詞;
n-gram sampling:以一定的概率,用n-gram來取代原始的句子。n的取值范圍是[1,5]。這個(gè)操作相當(dāng)于dropout,是升級(jí)版的Masking。

五、單句分類任務(wù) 實(shí)驗(yàn)結(jié)果分析
5.1 數(shù)據(jù)集介紹
本文所用的數(shù)據(jù)集 為 一個(gè) 關(guān)于酒店的二分類數(shù)據(jù),該數(shù)據(jù)樣式如下:
1 鬧中取靜的一個(gè)地方,在窗前能看到不錯(cuò)的風(fēng)景。酒店價(jià)格的確有些偏高
0 房價(jià)要四百多,但感到非常失望,陳舊,臟,比錦江之星還差。以后肯定不會(huì)再去了。這樣的硬件設(shè)施和服務(wù)怎么吸引客人呢。
1 酒店總體感覺不錯(cuò),很適合外賓入住,大堂的氛圍整個(gè)就像是一個(gè)外國人的社區(qū)。房間很舒服,攜程搞活動(dòng),還加送了紅酒和水果,很不錯(cuò),下次還會(huì)考慮入住。只是停車場比較麻煩,來賓進(jìn)停車場之前還要有狼狗繞車檢查,感覺不舒服。
0 好小的門面,沒有電梯,房間也不是很一致!豪華房居然要400多,馬桶還是壞的!酒店太自作主張了。。。。
0 房間以次充好,提出異議后才調(diào)整,調(diào)整后還是較差的房間
0 面前就是高架,實(shí)在是太吵了,一晚上沒睡!
...
5.2 實(shí)驗(yàn)結(jié)果分析
| 模型 | Acc | F1 | 速度 |
| Bert | 0.9 | 0.9051458382736542 | 0.24132323265075684 s |
| TextCNN | 0.8263671882450581 | 0.8271728271728271 | 0.001s |
| Bert->TextCNN | 0.88125 | 0.8883666274970623 | 0.004960536956787109 s |
六、總結(jié)
Bert->TextCNN 模型 雖然 效果 低于 Bert,但是 比 直接用 TextCNN 高很多;
Bert->TextCNN 模型 雖然 推理速度 低于 TextCNN,但是 比 直接用 Bert 高很多;
參考資料
基于BERT的蒸餾實(shí)驗(yàn)
知識(shí)蒸餾論文選讀(二)
知識(shí)蒸餾(Knowledge Dis

