<kbd id="afajh"><form id="afajh"></form></kbd>
<strong id="afajh"><dl id="afajh"></dl></strong>
    <del id="afajh"><form id="afajh"></form></del>
        1. <th id="afajh"><progress id="afajh"></progress></th>
          <b id="afajh"><abbr id="afajh"></abbr></b>
          <th id="afajh"><progress id="afajh"></progress></th>

          機(jī)器學(xué)習(xí)算法-隨機(jī)森林之決策樹R 代碼從頭暴力實現(xiàn)(2)

          共 468字,需瀏覽 1分鐘

           ·

          2021-01-13 16:22

          前文(機(jī)器學(xué)習(xí)算法 - 隨機(jī)森林之決策樹初探(1))講述了決策樹的基本概念、決策評價標(biāo)準(zhǔn)并手算了單個變量單個分組Gini impurity。是一個基本概念學(xué)習(xí)的過程,如果不了解,建議先讀一下再繼續(xù)。

          本篇通過 R 代碼(希望感興趣的朋友能夠投稿這個代碼的Python實現(xiàn))從頭暴力方式自寫函數(shù)訓(xùn)練決策樹。之前計算的結(jié)果,可以作為正對照,確定后續(xù)函數(shù)結(jié)果的準(zhǔn)確性。

          訓(xùn)練決策樹 - 確定根節(jié)點的分類閾值

          Gini impurity可以用來判斷每一步最合適的決策分類方式,那么怎么確定最優(yōu)的分類變量和分類閾值呢?

          最粗暴的方式是,我們用每個變量的每個可能得閾值來進(jìn)行決策分類,選擇具有最低Gini impurity值的分類組合。這不是最快速的解決問題的方式,但是最容易理解的方式。

          定義計算Gini impurity的函數(shù)

          data <- data.frame(x=c(0,0.5,1.1,1.8,1.9,2,2.5,3,3.6,3.7),
          y=c(1,0.5,1.5,2.1,2.8,2,2.2,3,3.3,3.5),
          color=c(rep('blue',3),rep('red',2),rep('green',5)))

          data

          ## x y color
          ## 1 0.0 1.0 blue
          ## 2 0.5 0.5 blue
          ## 3 1.1 1.5 blue
          ## 4 1.8 2.1 red
          ## 5 1.9 2.8 red
          ## 6 2.0 2.0 green
          ## 7 2.5 2.2 green
          ## 8 3.0 3.0 green
          ## 9 3.6 3.3 green
          ## 10 3.7 3.5 green

          首先定義個函數(shù)計算每個分支的Gini_impurity。

          Gini_impurity <- function(branch){
          # print(branch)
          len_branch <- length(branch)
          if(len_branch==0){
          return(0)
          }
          table_branch <- table(branch)
          wrong_probability <- function(x, total) (x/total*(1-x/total))
          return(sum(sapply(table_branch, wrong_probability, total=len_branch)))
          }

          測試下,沒問題。

          Gini_impurity(c(rep('a',2),rep('b',3)))

          ## [1] 0.48

          再定義一個函數(shù),計算每次決策的總Gini impurity.

          Gini_impurity_for_split_branch <- function(threshold, data, variable_column, 
          class_column, Init_gini_impurity=NULL){
          total = nrow(data)
          left <- data[data[variable_column] left_len = length(left)
          left_table = table(left)
          left_gini <- Gini_impurity(left)

          right <- data[data[variable_column]>=threshold,][[class_column]]
          right_len = length(right)
          right_table = table(right)
          right_gini <- Gini_impurity(right)
          total_gini <- left_gini * left_len / total + right_gini * right_len /total

          result = c(variable_column,threshold,
          paste(names(left_table), left_table, collapse="; ", sep=" x "),
          paste(names(right_table), right_table, collapse="; ", sep=" x "),
          total_gini)

          names(result) <- c("Variable", "Threshold", "Left_branch", "Right_branch", "Gini_impurity")

          if(!is.null(Init_gini_impurity)){
          Gini_gain <- Init_gini_impurity - total_gini
          result = c(variable_column, threshold,
          paste(names(left_table), left_table, collapse="; ", sep=" x "),
          paste(names(right_table), right_table, collapse="; ", sep=" x "),
          Gini_gain)

          names(result) <- c("Variable", "Threshold", "Left_branch", "Right_branch", "Gini_gain")
          }

          return(result)
          }

          測試下,跟之前計算的結(jié)果一致:

          as.data.frame(rbind(Gini_impurity_for_split_branch(2, data, 'x', 'color'), 
          Gini_impurity_for_split_branch(2, data, 'y', 'color')))

          ## Variable Threshold Left_branch Right_branch Gini_impurity
          ## 1 x 2 blue x 3; red x 2 green x 5 0.24
          ## 2 y 2 blue x 3 green x 5; red x 2 0.285714285714286

          暴力決策根節(jié)點和閾值

          基于前面定義的函數(shù),遍歷每一個可能的變量和閾值。

          首先看下基于變量x的計算方法:

          uniq_x <- sort(unique(data$x))
          delimiter_x <- zoo::rollmean(uniq_x,2)
          impurity_x <- as.data.frame(do.call(rbind, lapply(delimiter_x, Gini_impurity_for_split_branch,
          data=data, variable_column='x', class_column='color')))
          print(impurity_x)

          ## Variable Threshold Left_branch Right_branch Gini_impurity
          ## 1 x 0.25 blue x 1 blue x 2; green x 5; red x 2 0.533333333333333
          ## 2 x 0.8 blue x 2 blue x 1; green x 5; red x 2 0.425
          ## 3 x 1.45 blue x 3 green x 5; red x 2 0.285714285714286
          ## 4 x 1.85 blue x 3; red x 1 green x 5; red x 1 0.316666666666667
          ## 5 x 1.95 blue x 3; red x 2 green x 5 0.24
          ## 6 x 2.25 blue x 3; green x 1; red x 2 green x 4 0.366666666666667
          ## 7 x 2.75 blue x 3; green x 2; red x 2 green x 3 0.457142857142857
          ## 8 x 3.3 blue x 3; green x 3; red x 2 green x 2 0.525
          ## 9 x 3.65 blue x 3; green x 4; red x 2 green x 1 0.577777777777778

          再包裝2個函數(shù),一個計算單個變量為決策節(jié)點的各種可能決策的Gini impurity, 另一個計算所有變量依次作為決策節(jié)點的各種可能決策的Gini impurity

          Gini_impurity_for_all_possible_branches_of_one_variable <- function(data, variable, class, Init_gini_impurity=NULL){
          uniq_value <- sort(unique(data[[variable]]))
          delimiter_value <- zoo::rollmean(uniq_value,2)
          impurity <- as.data.frame(do.call(rbind, lapply(delimiter_value,
          Gini_impurity_for_split_branch, data=data,
          variable_column=variable,
          class_column=class,
          Init_gini_impurity=Init_gini_impurity)))
          if(is.null(Init_gini_impurity)){
          decreasing = F
          } else {
          decreasing = T
          }
          impurity <- impurity[order(impurity[[colnames(impurity)[5]]], decreasing = decreasing),]
          return(impurity)
          }

          Gini_impurity_for_all_possible_branches_of_all_variables <- function(data, variables, class, Init_gini_impurity=NULL){
          one_split_gini <- do.call(rbind, lapply(variables,
          Gini_impurity_for_all_possible_branches_of_one_variable,
          data=data, class=class,
          Init_gini_impurity=Init_gini_impurity))
          if(is.null(Init_gini_impurity)){
          decreasing = F
          } else {
          decreasing = T
          }
          one_split_gini[order(one_split_gini[[colnames(one_split_gini)[5]]], decreasing = decreasing),]
          }

          測試下:

          Gini_impurity_for_all_possible_branches_of_one_variable(data, 'x', 'color')

          ## Variable Threshold Left_branch Right_branch Gini_impurity
          ## 5 x 1.95 blue x 3; red x 2 green x 5 0.24
          ## 3 x 1.45 blue x 3 green x 5; red x 2 0.285714285714286
          ## 4 x 1.85 blue x 3; red x 1 green x 5; red x 1 0.316666666666667
          ## 6 x 2.25 blue x 3; green x 1; red x 2 green x 4 0.366666666666667
          ## 2 x 0.8 blue x 2 blue x 1; green x 5; red x 2 0.425
          ## 7 x 2.75 blue x 3; green x 2; red x 2 green x 3 0.457142857142857
          ## 8 x 3.3 blue x 3; green x 3; red x 2 green x 2 0.525
          ## 1 x 0.25 blue x 1 blue x 2; green x 5; red x 2 0.533333333333333
          ## 9 x 3.65 blue x 3; green x 4; red x 2 green x 1 0.577777777777778

          兩個變量的各個閾值分別進(jìn)行決策,并計算Gini impurity,輸出按Gini impurity由小到大排序后的結(jié)果。根據(jù)變量x和閾值1.95(與上面選擇的閾值2獲得的決策結(jié)果一致)的決策可以獲得本步?jīng)Q策的最好結(jié)果。

          variables <- c('x', 'y')
          Gini_impurity_for_all_possible_branches_of_all_variables(data, variables, class="color")

          ## Variable Threshold Left_branch Right_branch Gini_impurity
          ## 5 x 1.95 blue x 3; red x 2 green x 5 0.24
          ## 3 x 1.45 blue x 3 green x 5; red x 2 0.285714285714286
          ## 31 y 1.75 blue x 3 green x 5; red x 2 0.285714285714286
          ## 4 x 1.85 blue x 3; red x 1 green x 5; red x 1 0.316666666666667
          ## 6 x 2.25 blue x 3; green x 1; red x 2 green x 4 0.366666666666667
          ## 41 y 2.05 blue x 3; green x 1 green x 4; red x 2 0.416666666666667
          ## 2 x 0.8 blue x 2 blue x 1; green x 5; red x 2 0.425
          ## 21 y 1.25 blue x 2 blue x 1; green x 5; red x 2 0.425
          ## 51 y 2.15 blue x 3; green x 1; red x 1 green x 4; red x 1 0.44
          ## 7 x 2.75 blue x 3; green x 2; red x 2 green x 3 0.457142857142857
          ## 71 y 2.9 blue x 3; green x 2; red x 2 green x 3 0.457142857142857
          ## 61 y 2.5 blue x 3; green x 2; red x 1 green x 3; red x 1 0.516666666666667
          ## 8 x 3.3 blue x 3; green x 3; red x 2 green x 2 0.525
          ## 81 y 3.15 blue x 3; green x 3; red x 2 green x 2 0.525
          ## 1 x 0.25 blue x 1 blue x 2; green x 5; red x 2 0.533333333333333
          ## 11 y 0.75 blue x 1 blue x 2; green x 5; red x 2 0.533333333333333
          ## 9 x 3.65 blue x 3; green x 4; red x 2 green x 1 0.577777777777778
          ## 91 y 3.4 blue x 3; green x 4; red x 2 green x 1 0.577777777777778

          • https://victorzhou.com/blog/intro-to-random-forests/

          • https://victorzhou.com/blog/gini-impurity/

          • https://stats.stackexchange.com/questions/192310/is-random-forest-suitable-for-very-small-data-sets

          • https://towardsdatascience.com/understanding-random-forest-58381e0602d2

          • https://www.stat.berkeley.edu/~breiman/RandomForests/reg_philosophy.html

          • https://medium.com/@williamkoehrsen/random-forest-simple-explanation-377895a60d2d


          往期精品(點擊圖片直達(dá)文字對應(yīng)教程)


          后臺回復(fù)“生信寶典福利第一波”或點擊閱讀原文獲取教程合集

          ?

          (請備注姓名-學(xué)校/企業(yè)-職務(wù)等)


          瀏覽 51
          點贊
          評論
          收藏
          分享

          手機(jī)掃一掃分享

          分享
          舉報
          評論
          圖片
          表情
          推薦
          點贊
          評論
          收藏
          分享

          手機(jī)掃一掃分享

          分享
          舉報
          <kbd id="afajh"><form id="afajh"></form></kbd>
          <strong id="afajh"><dl id="afajh"></dl></strong>
            <del id="afajh"><form id="afajh"></form></del>
                1. <th id="afajh"><progress id="afajh"></progress></th>
                  <b id="afajh"><abbr id="afajh"></abbr></b>
                  <th id="afajh"><progress id="afajh"></progress></th>
                  亚洲性色图| 91黄页免费观看视频 | 91AAAAA在线观看 | 酒店偷拍无码成人网站 | 操逼图片视频免费看喷水高朝 |