?2012年至今,細(xì)數(shù)深度學(xué)習(xí)領(lǐng)域這些年取得的經(jīng)典成果!
這些研究均已經(jīng)過時(shí)間的考驗(yàn),并得到廣泛認(rèn)可。

ImageNet Classification with Deep Convolutional Neural Networks (2012),https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks Improving neural networks by preventing co-adaptation of feature detectors (2012)?,https://arxiv.org/abs/1207.0580 One weird trick for parallelizing convolutional neural networks (2014)?,https://arxiv.org/abs/1404.5997
用PyTorch搭建AlexNet,https://pytorch.org/hub/pytorch_vision_alexnet/ 用TensorFlow搭建AlexNet,https://github.com/tensorflow/models/blob/master/research/slim/nets/alexnet.py? ? ? ??

Playing Atari with Deep Reinforcement Learning (2013),https://arxiv.org/abs/1312.5602
用PyTorch搭建深度強(qiáng)化學(xué)習(xí)模型(DQN),https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html 用TensorFlow搭建DQN,https://www.tensorflow.org/agents/tutorials/1_dqn_tutorial

Sequence to Sequence Learning with Neural Networks,https://arxiv.org/abs/1409.3215 Neural Machine Translation by Jointly Learning to Align and Translate,https://arxiv.org/abs/1409.0473
用Pytorch搭建采用注意力的Seq2Seq,https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html# 用TensorFlow搭建采用注意力的Seq2Seq,https://www.tensorflow.org/addons/tutorials/networks_seq2seq_nmt

Adam: A Method for Stochastic Optimization,https://arxiv.org/abs/1412.6980
用PyTorch搭建實(shí)現(xiàn)Adam優(yōu)化器,https://d2l.ai/chapter_optimization/adam.html
PyTorch Adam實(shí)現(xiàn),https://pytorch.org/docs/master/_modules/torch/optim/adam.html
TensorFlow Adam實(shí)現(xiàn),https://github.com/tensorflow/tensorflow/blob/v2.2.0/tensorflow/python/keras/optimizer_v2/adam.py#L32-L281? ? ? ?
Generative Adversarial Networks,https://arxiv.org/abs/1406.2661 Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks,https://arxiv.org/abs/1511.06434
用PyTorch搭建DCGAN,https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html 用TensorFlow搭建DCGAN,https://www.tensorflow.org/tutorials/generative/dcgan? ? ? ?

Deep Residual Learning for Image Recognition,https://arxiv.org/abs/1512.03385
用PyTorch搭建ResNet,https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py 用TensorFlow搭建ResNet,https://github.com/tensorflow/tensorflow/blob/v2.2.0/tensorflow/python/keras/applications/resnet.py?
? ??Attention is All You Need,https://arxiv.org/abs/1706.03762
PyTorch: 應(yīng)用nn.Transformer和TorchText的序列到序列模型,https://pytorch.org/tutorials/beginner/transformer_tutorial.html Tensorflow: 用于語言理解的Transformer模型,https://www.tensorflow.org/tutorials/text/transformer HuggingFace的Transformers開發(fā)庫,https://github.com/huggingface/transformers? ? ?
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,https://arxiv.org/abs/1810.04805
具備Hugging Face的微調(diào)BERT,https://huggingface.co/transformers/training.html
本文不針對(duì)所提及的技術(shù)進(jìn)行深入解析與代碼示例。我們主要介紹技術(shù)的歷史背景、相關(guān)論文鏈接和具體實(shí)現(xiàn)。建議有興趣的讀者能在不借助現(xiàn)有代碼和高階開發(fā)庫的前提下將這些論文研究成果重新演示一遍,相信一定會(huì)有收獲。 本文聚焦于深度學(xué)習(xí)的主流領(lǐng)域,包括視覺、自然語言、語音和強(qiáng)化學(xué)習(xí)/游戲等。 本文僅討論運(yùn)行效果出色的官方或半官方開放源代碼實(shí)現(xiàn)。有些研究(比如Deep Mind的AlphaGo和OpenAI的Dota 2 AI)因?yàn)楣こ叹薮蟆⒉蝗菀妆粡?fù)制,所以在此沒有被重點(diǎn)介紹。 同一個(gè)時(shí)間段往往發(fā)布了許多相似的技術(shù)方法。但由于本文的主要目標(biāo)是幫助初學(xué)者了解涵蓋多個(gè)領(lǐng)域的不同觀點(diǎn),所以在每一類方法里選取了一種技術(shù)作為重點(diǎn)。比方說,GAN模型有上百種,但如果你想學(xué)習(xí)GAN的整體概念,只需要學(xué)習(xí)任意一種GAN即可。
評(píng)論
圖片
表情
