<kbd id="afajh"><form id="afajh"></form></kbd>
<strong id="afajh"><dl id="afajh"></dl></strong>
    <del id="afajh"><form id="afajh"></form></del>
        1. <th id="afajh"><progress id="afajh"></progress></th>
          <b id="afajh"><abbr id="afajh"></abbr></b>
          <th id="afajh"><progress id="afajh"></progress></th>

          【機器學習】集成學習代碼練習

          共 8982字,需瀏覽 18分鐘

           ·

          2021-11-19 11:57

          課程完整代碼:https://github.com/fengdu78/WZU-machine-learning-course

          代碼修改并注釋:黃海廣,[email protected]

          import?warnings
          warnings.filterwarnings("ignore")
          import?pandas?as?pd
          from?sklearn.model_selection?import?train_test_split??

          生成數(shù)據(jù)

          生成12000行的數(shù)據(jù),訓練集和測試集按照3:1劃分

          from?sklearn.datasets?import?make_hastie_10_2

          data,?target?=?make_hastie_10_2()
          X_train,?X_test,?y_train,?y_test?=?train_test_split(data,?target,?random_state=123)
          X_train.shape,?X_test.shape
          ((9000, 10), (3000, 10))

          模型對比

          對比六大模型,都使用默認參數(shù),因為數(shù)據(jù)是

          from?sklearn.linear_model?import?LogisticRegression
          from?sklearn.ensemble?import?RandomForestClassifier
          from?sklearn.ensemble?import?AdaBoostClassifier
          from?sklearn.ensemble?import?GradientBoostingClassifier
          from?xgboost?import?XGBClassifier
          from?lightgbm?import?LGBMClassifier
          from?sklearn.model_selection?import?cross_val_score
          import?time

          clf1?=?LogisticRegression()
          clf2?=?RandomForestClassifier()
          clf3?=?AdaBoostClassifier()
          clf4?=?GradientBoostingClassifier()
          clf5?=?XGBClassifier()
          clf6?=?LGBMClassifier()

          for?clf,?label?in?zip([clf1,?clf2,?clf3,?clf4,?clf5,?clf6],?[
          ????????'Logistic?Regression',?'Random?Forest',?'AdaBoost',?'GBDT',?'XGBoost',
          ????????'LightGBM'
          ]):
          ????start?=?time.time()
          ????scores?=?cross_val_score(clf,?X_train,?y_train,?scoring='accuracy',?cv=5)
          ????end?=?time.time()
          ????running_time?=?end?-?start
          ????print("Accuracy:?%0.8f (+/-?%0.2f),耗時%0.2f秒。模型名稱[%s]"?%
          ??????????(scores.mean(),?scores.std(),?running_time,?label))
          Accuracy: 0.47488889 (+/- 0.00),耗時0.04秒。模型名稱[Logistic Regression]
          Accuracy: 0.88966667 (+/- 0.01),耗時16.34秒。模型名稱[Random Forest]
          Accuracy: 0.88311111 (+/- 0.00),耗時3.39秒。模型名稱[AdaBoost]
          Accuracy: 0.91388889 (+/- 0.01),耗時13.14秒。模型名稱[GBDT]
          Accuracy: 0.92977778 (+/- 0.00),耗時3.60秒。模型名稱[XGBoost]
          Accuracy: 0.93188889 (+/- 0.01),耗時0.58秒。模型名稱[LightGBM]

          對比了六大模型,可以看出,邏輯回歸速度最快,但準確率最低。而LightGBM,速度快,而且準確率最高,所以,現(xiàn)在處理結構化數(shù)據(jù)的時候,大部分都是用LightGBM算法。

          XGBoost的使用

          1.原生XGBoost的使用

          import?xgboost?as?xgb
          #記錄程序運行時間
          import?time

          start_time?=?time.time()

          #xgb矩陣賦值
          xgb_train?=?xgb.DMatrix(X_train,?y_train)
          xgb_test?=?xgb.DMatrix(X_test,?label=y_test)
          ##參數(shù)
          params?=?{
          ????'booster':?'gbtree',
          #?????'silent':?1,??#設置成1則沒有運行信息輸出,最好是設置為0.
          ????#'nthread':7,#?cpu?線程數(shù)?默認最大
          ????'eta':?0.007,??#?如同學習率
          ????'min_child_weight':?3,
          ????#?這個參數(shù)默認是?1,是每個葉子里面?h?的和至少是多少,對正負樣本不均衡時的?0-1?分類而言
          ????#,假設 h 在?0.01 附近,min_child_weight 為 1 意味著葉子節(jié)點中最少需要包含 100?個樣本。
          ????#這個參數(shù)非常影響結果,控制葉子節(jié)點中二階導的和的最小值,該參數(shù)值越小,越容易 overfitting。
          ????'max_depth':?6,??#?構建樹的深度,越大越容易過擬合
          ????'gamma':?0.1,??#?樹的葉子節(jié)點上作進一步分區(qū)所需的最小損失減少,越大越保守,一般0.1、0.2這樣子。
          ????'subsample':?0.7,??#?隨機采樣訓練樣本
          ????'colsample_bytree':?0.7,??#?生成樹時進行的列采樣?
          ????'lambda':?2,??#?控制模型復雜度的權重值的L2正則化項參數(shù),參數(shù)越大,模型越不容易過擬合。
          ????#'alpha':0,?#?L1?正則項參數(shù)
          ????#'scale_pos_weight':1, #如果取值大于0的話,在類別樣本不平衡的情況下有助于快速收斂。
          ????#'objective':?'multi:softmax',?#多分類的問題
          ????#'num_class':10,?#?類別數(shù),多分類與?multisoftmax?并用
          ????'seed':?1000,??#隨機種子
          ????#'eval_metric':?'auc'
          }
          plst?=?list(params.items())
          num_rounds?=?500??#?迭代次數(shù)
          watchlist?=?[(xgb_train,?'train'),?(xgb_test,?'val')]
          #訓練模型并保存
          #?early_stopping_rounds?當設置的迭代次數(shù)較大時,early_stopping_rounds?可在一定的迭代次數(shù)內準確率沒有提升就停止訓練
          model?=?xgb.train(
          ????plst,
          ????xgb_train,
          ????num_rounds,
          ????watchlist,
          ????early_stopping_rounds=100,
          )
          #model.save_model('./model/xgb.model')?#?用于存儲訓練出的模型
          print("best?best_ntree_limit",?model.best_ntree_limit)
          y_pred?=?model.predict(xgb_test,?ntree_limit=model.best_ntree_limit)
          print('error=%f'?%
          ??????(sum(1
          ???????????for?i?in?range(len(y_pred))?if?int(y_pred[i]?>?0.5)?!=?y_test[i])?/
          ???????float(len(y_pred))))
          #?輸出運行時長
          cost_time?=?time.time()?-?start_time
          print("xgboost?success!",?'\n',?"cost?time:",?cost_time,?"(s)......")
          [0]	train-rmse:1.11000	val-rmse:1.10422
          [1] train-rmse:1.10734 val-rmse:1.10182
          [2] train-rmse:1.10465 val-rmse:1.09932
          [3] train-rmse:1.10207 val-rmse:1.09694
          ……
          [497] train-rmse:0.62135 val-rmse:0.68680
          [498] train-rmse:0.62096 val-rmse:0.68650
          [499] train-rmse:0.62056 val-rmse:0.68624
          best best_ntree_limit 500
          error=0.826667
          xgboost success!
          cost time: 3.5742645263671875 (s)......

          2.使用scikit-learn接口

          會改變的函數(shù)名是:

          eta -> learning_rate

          lambda -> reg_lambda

          alpha -> reg_alpha

          from?sklearn.model_selection?import?train_test_split
          from?sklearn?import?metrics

          from?xgboost?import?XGBClassifier

          clf?=?XGBClassifier(
          ????#???? silent=0, ?#設置成1則沒有運行信息輸出,最好是設置為0.是否在運行升級時打印消息。
          ????#nthread=4,#?cpu?線程數(shù)?默認最大
          ????learning_rate=0.3,??#?如同學習率
          ????min_child_weight=1,
          ????#?這個參數(shù)默認是?1,是每個葉子里面?h?的和至少是多少,對正負樣本不均衡時的?0-1?分類而言
          ????#,假設 h 在?0.01 附近,min_child_weight 為 1 意味著葉子節(jié)點中最少需要包含 100?個樣本。
          ????#這個參數(shù)非常影響結果,控制葉子節(jié)點中二階導的和的最小值,該參數(shù)值越小,越容易 overfitting。
          ????max_depth=6,??#?構建樹的深度,越大越容易過擬合
          ????gamma=0,??#?樹的葉子節(jié)點上作進一步分區(qū)所需的最小損失減少,越大越保守,一般0.1、0.2這樣子。
          ????subsample=1,??#?隨機采樣訓練樣本?訓練實例的子采樣比
          ????max_delta_step=0,??#最大增量步長,我們允許每個樹的權重估計。
          ????colsample_bytree=1,??#?生成樹時進行的列采樣?
          ????reg_lambda=1,??#?控制模型復雜度的權重值的L2正則化項參數(shù),參數(shù)越大,模型越不容易過擬合。
          ????#reg_alpha=0,?#?L1?正則項參數(shù)
          ????#scale_pos_weight=1, #如果取值大于0的話,在類別樣本不平衡的情況下有助于快速收斂。平衡正負權重
          ????#objective=?'multi:softmax',?#多分類的問題?指定學習任務和相應的學習目標
          ????#num_class=10,?#?類別數(shù),多分類與?multisoftmax?并用
          ????n_estimators=100,??#樹的個數(shù)
          ????seed=1000??#隨機種子
          ????#eval_metric=?'auc'
          )
          clf.fit(X_train,?y_train)

          y_true,?y_pred?=?y_test,?clf.predict(X_test)
          print("Accuracy?:?%.4g"?%?metrics.accuracy_score(y_true,?y_pred))
          [20:16:02] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.3.0/src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.
          Accuracy : 0.936

          LIghtGBM的使用

          1.原生接口

          import?lightgbm?as?lgb
          from?sklearn.metrics?import?mean_squared_error
          #?加載你的數(shù)據(jù)
          #?print('Load?data...')
          #?df_train?=?pd.read_csv('../regression/regression.train',?header=None,?sep='\t')
          #?df_test?=?pd.read_csv('../regression/regression.test',?header=None,?sep='\t')
          #
          #?y_train?=?df_train[0].values
          #?y_test?=?df_test[0].values
          #?X_train?=?df_train.drop(0,?axis=1).values
          #?X_test?=?df_test.drop(0,?axis=1).values

          #?創(chuàng)建成lgb特征的數(shù)據(jù)集格式
          lgb_train?=?lgb.Dataset(X_train,?y_train)??#?將數(shù)據(jù)保存到LightGBM二進制文件將使加載更快
          lgb_eval?=?lgb.Dataset(X_test,?y_test,?reference=lgb_train)??#?創(chuàng)建驗證數(shù)據(jù)

          #?將參數(shù)寫成字典下形式
          params?=?{
          ????'task':?'train',
          ????'boosting_type':?'gbdt',??#?設置提升類型
          ????'objective':?'regression',??#?目標函數(shù)
          ????'metric':?{'l2',?'auc'},??#?評估函數(shù)
          ????'num_leaves':?31,??#?葉子節(jié)點數(shù)
          ????'learning_rate':?0.05,??#?學習速率
          ????'feature_fraction':?0.9,??#?建樹的特征選擇比例
          ????'bagging_fraction':?0.8,??#?建樹的樣本采樣比例
          ????'bagging_freq':?5,??#?k?意味著每?k?次迭代執(zhí)行bagging
          ????'verbose':?1??#?<0?顯示致命的,?=0?顯示錯誤?(警告),?>0?顯示信息
          }

          print('Start?training...')
          #?訓練?cv?and?train
          gbm?=?lgb.train(params,
          ????????????????lgb_train,
          ????????????????num_boost_round=500,
          ????????????????valid_sets=lgb_eval,
          ????????????????early_stopping_rounds=5)??#?訓練數(shù)據(jù)需要參數(shù)列表和數(shù)據(jù)集

          print('Save?model...')

          gbm.save_model('model.txt')??#?訓練后保存模型到文件

          print('Start?predicting...')
          #?預測數(shù)據(jù)集
          y_pred?=?gbm.predict(X_test,?num_iteration=gbm.best_iteration
          ?????????????????????)??#如果在訓練期間啟用了早期停止,可以通過best_iteration方式從最佳迭代中獲得預測
          #?評估模型
          print('error=%f'?%
          ??????(sum(1
          ???????????for?i?in?range(len(y_pred))?if?int(y_pred[i]?>?0.5)?!=?y_test[i])?/
          ???????float(len(y_pred))))
          Start training...
          [LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was 0.000448 seconds.
          You can set `force_col_wise=true` to remove the overhead.
          [LightGBM] [Info] Total Bins 2550
          [LightGBM] [Info] Number of data points in the train set: 9000, number of used features: 10
          [LightGBM] [Info] Start training from score 0.012000
          [1] valid_0's auc: 0.814399 valid_0's l2: 0.965563
          Training until validation scores don't improve for 5 rounds
          [2] valid_0's auc: 0.84729 valid_0's l2: 0.934647
          ……
          [193] valid_0's auc: 0.982685 valid_0's l2: 0.320043
          Early stopping, best iteration is:
          [188] valid_0's auc: 0.982794 valid_0's l2: 0.319746
          Save model...
          Start predicting...
          error=0.664000

          2.scikit-learn接口

          from?sklearn?import?metrics
          from?lightgbm?import?LGBMClassifier

          clf?=?LGBMClassifier(
          ????boosting_type='gbdt',??#?提升樹的類型?gbdt,dart,goss,rf
          ????num_leaves=31,??#樹的最大葉子數(shù),對比xgboost一般為2^(max_depth)
          ????max_depth=-1,??#最大樹的深度
          ????learning_rate=0.1,??#學習率
          ????n_estimators=100,??#?擬合的樹的棵樹,相當于訓練輪數(shù)
          ????subsample_for_bin=200000,
          ????objective=None,
          ????class_weight=None,
          ????min_split_gain=0.0,??#?最小分割增益
          ????min_child_weight=0.001,??#?分支結點的最小權重
          ????min_child_samples=20,
          ????subsample=1.0,??#?訓練樣本采樣率?行
          ????subsample_freq=0,??#?子樣本頻率
          ????colsample_bytree=1.0,??#?訓練特征采樣率?列
          ????reg_alpha=0.0,??#?L1正則化系數(shù)
          ????reg_lambda=0.0,??#?L2正則化系數(shù)
          ????random_state=None,
          ????n_jobs=-1,
          ????silent=True,
          )
          clf.fit(X_train,?y_train,?eval_metric='auc')
          #設置驗證集合?verbose=False不打印過程
          clf.fit(X_train,?y_train)

          y_true,?y_pred?=?y_test,?clf.predict(X_test)
          print("Accuracy?:?%.4g"?%?metrics.accuracy_score(y_true,?y_pred))
          Accuracy : 0.927

          參考

          1.https://xgboost.readthedocs.io/

          2.https://lightgbm.readthedocs.io/

          3.https://blog.csdn.net/q383700092/article/details/53763328?locationNum=9&fps=1

          往期精彩回顧




          站qq群554839127,加入微信群請掃碼:
          瀏覽 44
          點贊
          評論
          收藏
          分享

          手機掃一掃分享

          分享
          舉報
          評論
          圖片
          表情
          推薦
          點贊
          評論
          收藏
          分享

          手機掃一掃分享

          分享
          舉報
          <kbd id="afajh"><form id="afajh"></form></kbd>
          <strong id="afajh"><dl id="afajh"></dl></strong>
            <del id="afajh"><form id="afajh"></form></del>
                1. <th id="afajh"><progress id="afajh"></progress></th>
                  <b id="afajh"><abbr id="afajh"></abbr></b>
                  <th id="afajh"><progress id="afajh"></progress></th>
                  亚洲中文字幕免费在线 | 熟女一区二区三区免费视频 | 一级黄色电影毛片 | 精品无码产一区二区 | 国产A片免费观看 |