【概率論】反直覺的三門問題,為什么80%的人都錯了?
導讀:在本文中我們將討論條件概率:給定結(jié)果受到先前事件影響的概率。

你原來的猜測有1/3的可能性是正確的;在這種情況下你輸了。但是: 你原來的猜測有2/3的可能性是錯誤的;在這種情況下你贏了。
你原來的猜測有1/4的可能性是正確的;在這種情況下你輸了,但是: 你原來的猜測有3/4的可能性是錯誤的。在這種情況下,贏的門是剩下的兩扇中的一個,那么你有一半的機會猜對。
你原來的猜測有1/n的可能性是正確的;在這種情況下你輸了。 你原來的猜測有1/n-1的可能性是錯誤的。在這種情況下,后面有車的門是剩下的n-2扇中的一個,那么你有1/(n-2)的機會猜對。


你原來的猜測有2/5的可能性是正確的。這時,在蒙提霍爾展示一只山羊之后,剩下的3扇門中有一輛汽車和兩只山羊;在這種情況下,你贏的概率是1/3。 你原來的猜測有3/5的可能性是錯誤的。這時,剩下的3扇門后有兩輛汽車和一只山羊;在這種情況下,你贏的概率是2/3。

你原來的猜測有k/n的概率是正確的。在這種情形下,蒙提霍爾給你展示一只山羊后,剩下的n-2扇門中有k-1輛汽車和n-k-1只山羊;相應地,你獲勝的概率為(k-1)/(n-2)。另外一方面: 你原來的猜測有(n-k)/n的概率是錯誤的。在這種情形下,剩下的 n-2扇門中有k輛汽車和n-k-2只山羊;你獲勝的概率將是k/n-2。




















也可以加一下老胡的微信 圍觀朋友圈~~~
推薦閱讀
(點擊標題可跳轉(zhuǎn)閱讀)
老鐵,三連支持一下,好嗎?↓↓↓
評論
圖片
表情
