HiveSQL實戰(zhàn) -- 電子商務消費行為分析(附源碼和數(shù)據(jù))
一、前言
Hive 學習過程中的一個練習項目,如果不妥的地方或者更好的建議,歡迎指出!我們主要進行一下一些練習:
-
數(shù)據(jù)結構 -
數(shù)據(jù)清洗 -
基于Hive的數(shù)據(jù)分析
二、項目需求
首先和大家講一下這個項目的需求:
「對某零售企業(yè)最近1年門店收集的數(shù)據(jù)進行數(shù)據(jù)分析」
-
潛在客戶畫像 -
用戶消費統(tǒng)計 -
門店的資源利用率 -
消費的特征人群定位 -
數(shù)據(jù)的可視化展現(xiàn)
三、數(shù)據(jù)結構
本次練習一共用到四張表,如下:
「文末有獲取方式」
Customer表
Transaction表
Store表
Review表
四、項目實戰(zhàn)
「Create HDFS Folder」
hdfs dfs -mkdir -p /tmp/shopping/data/customer
hdfs dfs -mkdir -p /tmp/shopping/data/transaction
hdfs dfs -mkdir -p /tmp/shopping/data/store
hdfs dfs -mkdir -p /tmp/shopping/data/review
「Upload the file to HDFS」
hdfs dfs -put /opt/soft/data/customer_details.csv /tmp/shopping/data/customer/
hdfs dfs -put /opt/soft/data/transaction_details.csv /tmp/shopping/data/transaction/
hdfs dfs -put /opt/soft/data/store_details.csv /tmp/shopping/data/store/
hdfs dfs -put /opt/soft/data/store_review.csv /tmp/shopping/data/review/
「Create database」
drop database if exists shopping cascade
create database shopping
「Use database」
use shopping
「Create external table」
「創(chuàng)建四張對應的外部表,也就是本次項目中的近源表?!?/strong>
create external table if not exists ext_customer_details(
customer_id string,
first_name string,
last_name string,
email string,
gender string,
address string,
country string,
language string,
job string,
credit_type string,
credit_no string
)
row format delimited fields terminated by ','
location '/tmp/shopping/data/customer/'
tblproperties('skip.header.line.count'='1')
create external table if not exists ext_transaction_details(
transaction_id string,
customer_id string,
store_id string,
price double,
product string,
buydate string,
buytime string
)
row format delimited fields terminated by ','
location '/tmp/shopping/data/transaction'
tblproperties('skip.header.line.count'='1')
create external table if not exists ext_store_details(
store_id string,
store_name string,
employee_number int
)
row format delimited fields terminated by ','
location '/tmp/shopping/data/store/'
tblproperties('skip.header.line.count'='1')
create external table if not exists ext_store_review(
transaction_id string,
store_id string,
review_score int
)
row format delimited fields terminated by ','
location '/tmp/shopping/data/review'
tblproperties('skip.header.line.count'='1')
通過UDF自定義 MD5加密函數(shù)
「Create MD5 encryption function」
這里通過UDF自定義 MD5加密函數(shù) ,對地址、郵箱等信息進行加密。
-- md5 udf自定義加密函數(shù)
--add jar /opt/soft/data/md5.jar
--create temporary function md5 as 'com.shopping.services.Encryption'
--select md5('abc')
--drop temporary function encrymd5
「Clean and Mask customer_details 創(chuàng)建明細表」
create table if not exists customer_details
as select customer_id,first_name,last_name,md5(email) email,gender,md5(address) address,country,job,credit_type,md5(credit_no)
from ext_customer_details
對表內(nèi)容進行檢查,為數(shù)據(jù)清洗做準備
「Check ext_transaction_details data」對transaction表的transaction_id進行檢查,查看重復的、錯誤的、以及空值的數(shù)量。
這里從表中我們可以看到transaction_id存在100個重復的值。
with
t1 as (select 'countrow' as status,count(transaction_id) as val from ext_transaction_details),
t2 as (select 'distinct' as status,(count(transaction_id)-count(distinct transaction_id)) as val from ext_transaction_details),
t3 as (select 'nullrow' as status,count(transaction_id) as val from ext_transaction_details where transaction_id is null),
t4 as (select 'errorexp' as status,count(regexp_extract(transaction_id,'^([0-9]{1,4})$',0)) as val from ext_transaction_details)
select * from t1 union all select * from t2 union all select * from t3 union all select * from t4
「Clean transaction_details into partition table」
create table if not exists transaction_details(
transaction_id string,
customer_id string,
store_id string,
price double,
product string,
buydate string,
buytime string
)
partitioned by (partday string)
row format delimited fields terminated by ','
stored as rcfile
「開啟動態(tài)分區(qū)」
set hive.exec.dynamic.partition=true
set hive.exec.dynamic.partition.mode=nonstrict
開啟動態(tài)分區(qū),通過窗口函數(shù)對數(shù)據(jù)進行清洗
「Clear data and import data into transaction_details」
-- partday 分區(qū) transaction_id 重復
select if(t.ct=1,transaction_id,concat(t.transaction_id,'_',t.ct-1))
transaction_id,customer_id,store_id,price,product,buydate,buytime,date_format(buydate,'yyyy-MM')
as partday
from (select *,row_number() over(partition by transaction_id) as ct
from ext_transaction_details) t
insert into transaction_details partition(partday)
select if(t.ct=1,transaction_id,concat(t.transaction_id,'_',t.ct-1)) transaction_id,customer_id,store_id,price,product,buydate,buytime,date_format(regexp_replace(buydate,'/','-'),'yyyy-MM')
as partday from (select *,row_number() over(partition by transaction_id) as ct
from ext_transaction_details) t
-
「row_number() over(partition by transaction_id)」 窗口函數(shù) :從1開始,按照順序,生成分組內(nèi)記錄的序列,row_number()的值不會存在重復,當排序的值相同時,按照表中記錄的順序進行排列 這里我們對分組的transaction_id -
if(t.ct=1,transaction_id,concat(t.transaction_id,'_',t.ct-1))如果滿足ct=1,就是transaction_id,否則進行字符串拼接生成新的id
「Clean store_review table」
create table store_review
as select transaction_id,store_id,nvl(review_score,ceil(rand()*5))
as review_score from ext_store_review
「NVL(E1, E2)的功能為:如果E1為NULL,則函數(shù)返回E2,否則返回E1本身?!?/strong>
我們可以看到表中的數(shù)據(jù)存在空值,通過NVL函數(shù)對數(shù)據(jù)進行填充。
show tables
通過清洗后的近源表和明細表如上。
數(shù)據(jù)分析
Customer分析
-
找出顧客最常用的信用卡
select credit_type,count(credit_type) as peoplenum from customer_details
group by credit_type order by peoplenum desc limit 1
-
找出客戶資料中排名前五的職位名稱
select job,count(job) as jobnum from customer_details
group by job
order by jobnum desc
limit 5
-
在美國女性最常用的信用卡
select credit_type,count(credit_type) as femalenum from customer_details
where gender='Female'
group by credit_type
order by femalenum desc
limit 1
-
按性別和國家進行客戶統(tǒng)計
select count(*) as customernum,country,gender from customer_details
group by country,gender
Transaction分析
-
計算每月總收入
select partday,sum(price) as countMoney from transaction_details group by partday
-
計算每個季度的總收入「Create Quarter Macro 定義季度宏」,將時間按季度進行劃分
create temporary macro
calQuarter(dt string)
concat(year(regexp_replace(dt,'/','-')),'年第',ceil(month(regexp_replace(dt,'/','-'))/3),'季度')
select calQuarter(buydate) as quarter,sum(price) as sale
from transaction_details group by calQuarter(buydate)
-
按年計算總收入
create temporary macro calYear(dt string) year(regexp_replace(dt,'/','-'))
select calYear(buydate) as year,sum(price) as sale from transaction_details group by calYear(buydate)
-
按工作日計算總收入
create temporary macro calWeek(dt string) concat('星期',dayofweek(regexp_replace(dt,'/','-'))-1)
select concat('星期',dayofweek(regexp_replace(buydate,'/','-'))-1) as week,sum(price) as sale
from transaction_details group by dayofweek(regexp_replace(buydate,'/','-'))
-
按時間段計算總收入(需要清理數(shù)據(jù))
select concat(regexp_extract(buytime,'[0-9]{1,2}',0),'時') as time,sum(price) as sale from transaction_details group by regexp_extract(buytime,'[0-9]{1,2}',0)
-
按時間段計算平均消費「Time macro」
create temporary macro calTime(time string) if(split(time,' ')[1]='PM',regexp_extract(time,'[0-9]{1,2}',0)+12,
if(split(time,' ')[1]='AM',regexp_extract(time,'[0-9]{1,2}',0),split(time,':')[0]))
select calTime(buytime) as time,sum(price) as sale from transaction_details group by calTime(buytime)
--define time bucket
--early morning: (5:00, 8:00]
--morning: (8:00, 11:00]
--noon: (11:00, 13:00]
--afternoon: (13:00, 18:00]
--evening: (18:00, 22:00]
--night: (22:00, 5:00] --make it as else, since it is not liner increasing
--We also format the time. 1st format time to 19:23 like, then compare, then convert minites to hours
with
t1 as
(select calTime(buytime) as time,sum(price) as sale from transaction_details group by calTime(buytime) order by time),
t2 as
(select if(time>5 and time<=8,'early morning',if(time >8 and time<=11,'moring',if(time>11 and time <13,'noon',
if(time>13 and time <=18,'afternoon',if(time >18 and time <=22,'evening','night'))))) as sumtime,sale
from t1)
select sumtime,sum(sale) from t2
group by sumtime
-
按工作日計算平均消費
select concat('星期',dayofweek(regexp_replace(buydate,'/','-'))-1)
as week,avg(price) as sale from transaction_details
where dayofweek(regexp_replace(buydate,'/','-'))-1 !=0 and dayofweek(regexp_replace(buydate,'/','-'))-1 !=6
group by dayofweek(regexp_replace(buydate,'/','-'))
-
計算年、月、日的交易總數(shù)
select buydate as month,count(*) as salenum from transaction_details group by buydate
-
找出交易量最大的10個客戶
select c.customer_id,c.first_name,c.last_name,count(c.customer_id) as custnum from customer_details c
inner join transaction_details t
on c.customer_id=t.customer_id
group by c.customer_id,c.first_name,c.last_name
order by custnum desc
limit 10
-
找出消費最多的前10位顧客
select c.customer_id,c.first_name,c.last_name,sum(price) as sumprice from customer_details c
inner join transaction_details t
on c.customer_id=t.customer_id
group by c.customer_id,c.first_name,c.last_name
order by sumprice desc
limit 10
-
統(tǒng)計該期間交易數(shù)量最少的用戶
select c.customer_id,c.first_name,c.last_name,count(*) as custnum from customer_details c
inner join transaction_details t
on c.customer_id=t.customer_id
group by c.customer_id,c.first_name,c.last_name
order by custnum asc
limit 1
-
計算每個季度的獨立客戶總數(shù)
select calQuarter(buydate) as quarter,count(distinct customer_id) as uninum
from transaction_details
group by calQuarter(buydate)
-
計算每周的獨立客戶總數(shù)
select calWeek(buydate) as quarter,count(distinct customer_id) as uninum
from transaction_details
group by calWeek(buydate)
-
計算整個活動客戶平均花費的最大值
select sum(price)/count(*) as sale
from transaction_details
group by customer_id
order by sale desc
limit 1
-
統(tǒng)計每月花費最多的客戶
with
t1 as
(select customer_id,partday,count(distinct buydate) as visit from transaction_details group by partday,customer_id),
t2 as
(select customer_id,partday,visit,row_number() over(partition by partday order by visit desc) as visitnum from t1)
select * from t2 where visitnum=1
-
統(tǒng)計每月訪問次數(shù)最多的客戶
with
t1 as
(select customer_id,partday,sum(price) as pay from transaction_details group by partday,customer_id),
t2 as
(select customer_id,partday,pay,row_number() over(partition by partday order by pay desc) as paynum from t1)
select * from t2 where paynum=1
-
按總價找出最受歡迎的5種產(chǎn)品
select product,sum(price) as sale from transaction_details
group by product
order by sale desc
limit 5
-
根據(jù)購買頻率找出最暢銷的5種產(chǎn)品
select product,count(*) as num from transaction_details
group by product
order by num desc
limit 5
-
根據(jù)客戶數(shù)量找出最受歡迎的5種產(chǎn)品
select product,count(distinct customer_id) as num from transaction_details
group by product
order by num desc
limit 5
-
驗證前5個details
select * from transaction_details where product in ('Goat - Whole Cut')
Store分析
-
按客流量找出最受歡迎的商店
with
t1 as (select store_id,count(*) as visit from transaction_details
group by
store_id order by visit desc limit 1)
select s.store_name,t.visit
from t1 t
inner join
ext_store_details s
on t.store_id=s.store_id
-
根據(jù)顧客消費價格找出最受歡迎的商店
with
t1 as (select store_id,sum(price) as sale from transaction_details
group by
store_id order by sale desc limit 1)
select s.store_name,t.sale
from t1 t
inner join
ext_store_details s
on t.store_id=s.store_id
-
根據(jù)顧客交易情況找出最受歡迎的商店
with
t1 as
(select store_id,store_name from ext_store_details)
select t.store_id,store_name,count(distinct t.customer_id) as num
from transaction_details t
inner join t1 s
on s.store_id=t.store_id
group by t.store_id,store_name
order by num desc
limit 1
-
根據(jù)商店和唯一的顧客id獲取最受歡迎的產(chǎn)品
with
t1 as (select store_id,product,count(distinct customer_id) as num from transaction_details
group by store_id,product order by num desc limit 1)
select s.store_name,t.num,t.product
from t1 t
inner join
ext_store_details s
on t.store_id=s.store_id
-
獲取每個商店的員工與顧客比
with
t1 as (select store_id,count(distinct customer_id) as num from transaction_details
group by store_id )
select s.store_name,employee_number/num as vs from t1 t
inner join ext_store_details s
on t.store_id=s.store_id
-
按年和月計算每家店的收入
select store_id,partday,sum(price) from transaction_details group by store_id,partday
-
按店鋪制作總收益餅圖
select store_id,sum(price) from transaction_details group by store_id
-
找出每個商店最繁忙的時間段
with
t1 as
(select store_id,count(customer_id) as peoplenum from transaction_details group by store_id,concat(regexp_extract(buytime,'[0-9]{1,2}',0),'時')),
t2 as
(select store_id,peoplenum,row_number() over(partition by store_id order by peoplenum desc) as peo from t1 )
select t.store_id,e.store_name,t.peoplenum from t2 t
inner join ext_store_details e
on e.store_id = t.store_id
where peo =1
-
找出每家店的忠實顧客
with
t1 as
(select customer_id,store_id,count(customer_id) as visit from transaction_details group by store_id,customer_id ),
t2 as
(select customer_id,store_id,visit,row_number() over(partition by store_id order by visit desc) as most from t1)
select r.customer_id,concat(first_name,last_name) as customer_name,r.store_id,store_name,r.visit from t2 r
inner join customer_details c
on c.customer_id=r.customer_id
inner join ext_store_details e
on e.store_id=r.store_id
where most=1
-
根據(jù)每位員工的最高收入找出明星商店
with
t1 as
(select store_id,sum(price) as sumprice from transaction_details group by store_id)
select t.store_id,s.store_name,sumprice/employee_number as avgprice from t1 t
inner join ext_store_details s
on s.store_id=t.store_id
order by avgprice desc
Review分析
-
在ext_store_review中找出存在沖突的交易映射關系
select t.transaction_id,t.store_id from transaction_details t
inner join ext_store_review e
on e.transaction_id=t.transaction_id
where e.store_id!=t.store_id
-
了解客戶評價的覆蓋率
with
trans as (select store_id,count(transaction_id) as countSale from transaction_details group by store_id),
rev as (select store_id,count(distinct transaction_id) as review from store_review group by store_id)
select s.store_name,(r.review*100/t.countSale) as cover from trans t
inner join rev r
on t.store_id=r.store_id
inner join ext_store_details s
on t.store_id=s.store_id
-
根據(jù)評分了解客戶的分布情況
select store_id,review_score,count(review_score) as numview from ext_store_review where review_score>0 group by review_score,store_id
-
根據(jù)交易了解客戶的分布情況
select store_id,count(transaction_id) as transactionnum from ext_store_review group by store_id
-
客戶給出的最佳評價是否總是同一家門店
select store_id,customer_id,count(customer_id) as visit from transaction_details t
join ext_store_review e
on e.transaction_id = t.transaction_id
where e.review_score=5
group by t.store_id,t.customer_id
掃描上方二維碼,回復【表格】
獲取文中的三個表數(shù)據(jù)
--end--
