(附代碼)基于Python對交通路口的紅綠燈進行顏色檢測
點擊左上方藍(lán)字關(guān)注我們

1.視頻讀取
首先把視頻讀取進來,因為我測試的視頻是4k的所以我用resize調(diào)整了一下視頻的分辨大小
cap = cv2.VideoCapture('video/小路口.mp4')while True:ret,frame = cap.read()if ret == False:breakframe = cv2.resize(frame,(1920,1080))cv2.imshow('frame',frame)c = cv2.waitKey(10)if c==27:break
imshow()(如下圖所示)

2.截取roi區(qū)域
截取roi的區(qū)域,也就是說,為了避免多余的干擾因素我們要把紅綠燈的位置給截取出來(如下圖所示)

截取后的roi(如下圖所示)

3.轉(zhuǎn)換hsv顏色空間
HSV顏色分量范圍
(詳細(xì)參考:https://www.cnblogs.com/wangyblzu/p/5710715.html)
一般對顏色空間的圖像進行有效處理都是在HSV空間進行的,然后對于基本色中對應(yīng)的HSV分量需要給定一個嚴(yán)格的范圍,下面是通過實驗計算的模糊范圍(準(zhǔn)確的范圍在網(wǎng)上都沒有給出)。H: 0— 180
S: 0— 255
V: 0— 255
此處把部分紅色歸為紫色范圍(如下圖所示):

上面是已給好特定的顏色值,如果你的顏色效果不佳,可以通過python代碼來對min和max值的微調(diào),用opencv中的api來獲取你所需理想的顏色,可以復(fù)制以下代碼來進行顏色的調(diào)整。
1.首先你要截取roi區(qū)域的一張圖片
2.讀取這張圖然后調(diào)整顏色值
顏色調(diào)整代碼如下:
(詳細(xì)參考:https://www.bilibili.com/video/BV16K411W7x9)
import cv2import numpy as npdef empty(a):passdef stackImages(scale,imgArray):rows = len(imgArray)cols = len(imgArray[0])rowsAvailable = isinstance(imgArray[0], list)width = imgArray[0][0].shape[1]height = imgArray[0][0].shape[0]if rowsAvailable:for x in range ( 0, rows):for y in range(0, cols):if imgArray[x][y].shape[:2] == imgArray[0][0].shape [:2]:imgArray[x][y] = cv2.resize(imgArray[x][y], (0, 0), None, scale, scale)else:imgArray[x][y] = cv2.resize(imgArray[x][y], (imgArray[0][0].shape[1], imgArray[0][0].shape[0]), None, scale, scale)if len(imgArray[x][y].shape) == 2: imgArray[x][y]= cv2.cvtColor( imgArray[x][y], cv2.COLOR_GRAY2BGR)imageBlank = np.zeros((height, width, 3), np.uint8)hor = [imageBlank]*rowshor_con = [imageBlank]*rowsfor x in range(0, rows):hor[x] = np.hstack(imgArray[x])ver = np.vstack(hor)else:for x in range(0, rows):if imgArray[x].shape[:2] == imgArray[0].shape[:2]:imgArray[x] = cv2.resize(imgArray[x], (0, 0), None, scale, scale)else:imgArray[x] = cv2.resize(imgArray[x], (imgArray[0].shape[1], imgArray[0].shape[0]), None,scale, scale)if len(imgArray[x].shape) == 2: imgArray[x] = cv2.cvtColor(imgArray[x], cv2.COLOR_GRAY2BGR)hor= np.hstack(imgArray)ver = horreturn ver#讀取的圖片路徑path = './green.jpg'cv2.namedWindow("TrackBars")cv2.resizeWindow("TrackBars",640,240)cv2.createTrackbar("Hue Min","TrackBars",0,179,empty)cv2.createTrackbar("Hue Max","TrackBars",19,179,empty)cv2.createTrackbar("Sat Min","TrackBars",110,255,empty)cv2.createTrackbar("Sat Max","TrackBars",240,255,empty)cv2.createTrackbar("Val Min","TrackBars",153,255,empty)cv2.createTrackbar("Val Max","TrackBars",255,255,empty)while True:img = cv2.imread(path)imgHSV = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)h_min = cv2.getTrackbarPos("Hue Min","TrackBars")h_max = cv2.getTrackbarPos("Hue Max", "TrackBars")s_min = cv2.getTrackbarPos("Sat Min", "TrackBars")s_max = cv2.getTrackbarPos("Sat Max", "TrackBars")v_min = cv2.getTrackbarPos("Val Min", "TrackBars")v_max = cv2.getTrackbarPos("Val Max", "TrackBars")print(h_min,h_max,s_min,s_max,v_min,v_max)lower = np.array([h_min,s_min,v_min])upper = np.array([h_max,s_max,v_max])mask = cv2.inRange(imgHSV,lower,upper)imgResult = cv2.bitwise_and(img,img,mask=mask)imgStack = stackImages(0.6,([img,imgHSV],[mask,imgResult]))cv2.imshow("Stacked Images", imgStack)cv2.waitKey(1)
運行代碼后調(diào)整的結(jié)果(如下圖所示),很明顯可以看到綠色已經(jīng)被獲取到。

4.二值圖像顏色判定
因為圖像是二值的圖像,所以如果圖像出現(xiàn)白點,也就是255,那么就取他的max最大值255,視頻幀的不斷變化然后遍歷每個顏色值
red_color = np.max(red_blur)green_color = np.max(green_blur)if red_color == 255:print('red')elif green_color == 255:print('green')
5.顏色結(jié)果畫在圖像上
用矩形框來框選出紅綠燈區(qū)域
cv2.rectangle(frame,(1020,50),(1060,90),(0,0,255),2) #按坐標(biāo)畫出矩形框cv2.putText(frame, "red", (1020, 40), cv2.FONT_HERSHEY_COMPLEX, 1, (0, 0, 255),2)#顯示red文本信息
6.完整代碼
import cv2import numpy as npcap = cv2.VideoCapture('video/小路口.mp4')while True:ret,frame = cap.read()if ret == False:breakframe = cv2.resize(frame,(1920,1080))#截取roi區(qū)域roiColor = frame[50:90,950:1100]#轉(zhuǎn)換hsv顏色空間hsv = cv2.cvtColor(roiColor,cv2.COLOR_BGR2HSV)#redlower_hsv_red = np.array([157,177,122])upper_hsv_red = np.array([179,255,255])mask_red = cv2.inRange(hsv,lowerb=lower_hsv_red,upperb=upper_hsv_red)#中值濾波red_blur = cv2.medianBlur(mask_red, 7)#greenlower_hsv_green = np.array([49,79,137])upper_hsv_green = np.array([90,255,255])mask_green = cv2.inRange(hsv,lowerb=lower_hsv_green,upperb=upper_hsv_green)#中值濾波green_blur = cv2.medianBlur(mask_green, 7)#因為圖像是二值的圖像,所以如果圖像出現(xiàn)白點,也就是255,那么就取他的max最大值255red_color = np.max(red_blur)green_color = np.max(green_blur)#在red_color中判斷二值圖像如果數(shù)值等于255,那么就判定為redif red_color == 255:print('red')#。。。這是我經(jīng)常會混淆的坐標(biāo)。。。就列舉出來記一下。。。# y y+h x x+w#frame[50:90,950:1100]# x y x+w y+hcv2.rectangle(frame,(1020,50),(1060,90),(0,0,255),2) #按坐標(biāo)畫出矩形框cv2.putText(frame, "red", (1020, 40), cv2.FONT_HERSHEY_COMPLEX, 1, (0, 0, 255),2)#顯示red文本信息#在green_color中判斷二值圖像如果數(shù)值等于255,那么就判定為greenelif green_color == 255:print('green')cv2.rectangle(frame,(1020,50),(1060,90),(0,255,0),2)cv2.putText(frame, "green", (1020, 40), cv2.FONT_HERSHEY_COMPLEX, 1, (0, 255, 0),2)cv2.imshow('frame',frame)red_blur = cv2.resize(red_blur,(300,200))green_blur = cv2.resize(green_blur,(300,200))cv2.imshow('red_window',red_blur)cv2.imshow('green_window',green_blur)c = cv2.waitKey(10)if c==27:break
檢測紅燈的效果(如下圖所示)

檢測綠燈的效果(如下圖所示)

最后?。?!
第一次接觸opencv!所以請各位視覺領(lǐng)域的大佬們勿噴我這個小菜雞!(/狗頭)
代碼量非常少,無泛化能力,很low的一種做法。。。不過對于小白的我來說學(xué)習(xí)hsv顏色空間還是很有幫助滴!干就完了!奧利給!
END
整理不易,點贊鼓勵一下吧↓
