<kbd id="afajh"><form id="afajh"></form></kbd>
<strong id="afajh"><dl id="afajh"></dl></strong>
    <del id="afajh"><form id="afajh"></form></del>
        1. <th id="afajh"><progress id="afajh"></progress></th>
          <b id="afajh"><abbr id="afajh"></abbr></b>
          <th id="afajh"><progress id="afajh"></progress></th>

          Python進(jìn)行特征提取

          共 4166字,需瀏覽 9分鐘

           ·

          2020-09-28 23:38

          #過(guò)濾式特征選擇
          #根據(jù)方差進(jìn)行選擇,方差越小,代表該屬性識(shí)別能力很差,可以剔除
          from?sklearn.feature_selection?import?VarianceThreshold
          x=[[100,1,2,3],
          ???[100,4,5,6],
          ???[100,7,8,9],
          ???[101,11,12,13]]
          selector=VarianceThreshold(1)??#方差閾值值,
          selector.fit(x)
          selector.variances_??#展現(xiàn)屬性的方差
          selector.transform(x)#進(jìn)行特征選擇
          selector.get_support(True)??#選擇結(jié)果后,特征之前的索引
          selector.inverse_transform(selector.transform(x))?#將特征選擇后的結(jié)果還原成原始數(shù)據(jù)
          ??????????????????????????????????????????????????#被剔除掉的數(shù)據(jù),顯示為0
          ??????????????????????????????????????????????????
          #單變量特征選擇
          from?sklearn.feature_selection?import?SelectKBest,f_classif
          x=[[1,2,3,4,5],
          ???[5,4,3,2,1],
          ???[3,3,3,3,3],
          ???[1,1,1,1,1]]
          y=[0,1,0,1]
          selector=SelectKBest(score_func=f_classif,k=3)#選擇3個(gè)特征,指標(biāo)使用的是方差分析F值
          selector.fit(x,y)
          selector.scores_?#每一個(gè)特征的得分
          selector.pvalues_
          selector.get_support(True)?#如果為true,則返回被選出的特征下標(biāo),如果選擇False,則
          ????????????????????????????#返回的是一個(gè)布爾值組成的數(shù)組,該數(shù)組只是那些特征被選擇
          selector.transform(x)
          ?
          ?
          #包裹時(shí)特征選擇
          from?sklearn.feature_selection?import?RFE
          from?sklearn.svm?import?LinearSVC??#選擇svm作為評(píng)定算法
          from?sklearn.datasets?import?load_iris?#加載數(shù)據(jù)集
          iris=load_iris()
          x=iris.data
          y=iris.target
          estimator=LinearSVC()
          selector=RFE(estimator=estimator,n_features_to_select=2)?#選擇2個(gè)特征
          selector.fit(x,y)
          selector.n_features_???#給出被選出的特征的數(shù)量
          selector.support_??????#給出了被選擇特征的mask
          selector.ranking_??????#特征排名,被選出特征的排名為1
          ?
          #注意:特征提取對(duì)于預(yù)測(cè)性能的提升沒(méi)有必然的聯(lián)系,接下來(lái)進(jìn)行比較;
          from?sklearn.feature_selection?import?RFE
          from?sklearn.svm?import?LinearSVC
          from?sklearn?import?cross_validation
          from?sklearn.datasets?import?load_iris
          ?
          #加載數(shù)據(jù)
          iris=load_iris()
          X=iris.data
          y=iris.target
          #特征提取
          estimator=LinearSVC()
          selector=RFE(estimator=estimator,n_features_to_select=2)
          X_t=selector.fit_transform(X,y)
          #切分測(cè)試集與驗(yàn)證集
          x_train,x_test,y_train,y_test=cross_validation.train_test_split(X,y,
          ????????????????????????????????????test_size=0.25,random_state=0,stratify=y)
          x_train_t,x_test_t,y_train_t,y_test_t=cross_validation.train_test_split(X_t,y,
          ????????????????????????????????????test_size=0.25,random_state=0,stratify=y)
          ?
          ?
          clf=LinearSVC()
          clf_t=LinearSVC()
          clf.fit(x_train,y_train)
          clf_t.fit(x_train_t,y_train_t)
          print('origin?dataset?test?score:',clf.score(x_test,y_test))
          #origin?dataset?test?score:?0.973684210526
          print('selected?Dataset:test?score:',clf_t.score(x_test_t,y_test_t))
          #selected?Dataset:test?score:?0.947368421053
          ?
          import?numpy?as?np
          from?sklearn.feature_selection?import?RFECV
          from?sklearn.svm?import?LinearSVC
          from?sklearn.datasets?import?load_iris
          iris=load_iris()
          x=iris.data
          y=iris.target
          estimator=LinearSVC()
          selector=RFECV(estimator=estimator,cv=3)
          selector.fit(x,y)
          selector.n_features_
          selector.support_
          selector.ranking_
          selector.grid_scores_

          #嵌入式特征選擇
          import?numpy?as?np
          from?sklearn.feature_selection?import?SelectFromModel
          from?sklearn.svm?import?LinearSVC
          from?sklearn.datasets?import?load_digits
          digits=load_digits()
          x=digits.data
          y=digits.target
          estimator=LinearSVC(penalty='l1',dual=False)
          selector=SelectFromModel(estimator=estimator,threshold='mean')
          selector.fit(x,y)
          selector.transform(x)
          selector.threshold_
          selector.get_support(indices=True)
          ?
          #scikitlearn提供了Pipeline來(lái)講多個(gè)學(xué)習(xí)器組成流水線,通常流水線的形式為:將數(shù)據(jù)標(biāo)準(zhǔn)化,
          #--》特征提取的學(xué)習(xí)器————》執(zhí)行預(yù)測(cè)的學(xué)習(xí)器,除了最后一個(gè)學(xué)習(xí)器之后,
          #前面的所有學(xué)習(xí)器必須提供transform方法,該方法用于數(shù)據(jù)轉(zhuǎn)化(如歸一化、正則化、
          #以及特征提取
          #學(xué)習(xí)器流水線(pipeline)
          from?sklearn.svm?import?LinearSVC
          from?sklearn.datasets?import?load_digits
          from?sklearn?import?cross_validation
          from?sklearn.linear_model?import?LogisticRegression
          from?sklearn.pipeline?import?Pipeline
          def?test_Pipeline(data):
          ????x_train,x_test,y_train,y_test=data
          ????steps=[('linear_svm',LinearSVC(C=1,penalty='l1',dual=False)),
          ???????????('logisticregression',LogisticRegression(C=1))]
          ????pipeline=Pipeline(steps)
          ????pipeline.fit(x_train,y_train)
          ????print('named?steps',pipeline.named_steps)
          ????print('pipeline?score',pipeline.score(x_test,y_test))
          ????
          if?__name__=='__main__':
          ????data=load_digits()
          ????x=data.data
          ????y=data.target
          ????test_Pipeline(cross_validation.train_test_split(x,y,test_size=0.25,
          ????????????????????????????????????random_state=0,stratify=y))

          公眾號(hào)推薦:數(shù)據(jù)思踐

          數(shù)據(jù)思踐公眾號(hào)記錄和分享數(shù)據(jù)人思考和踐行的內(nèi)容與故事。

          《數(shù)據(jù)科學(xué)與人工智能》公眾號(hào)推薦朋友們學(xué)習(xí)和使用Python語(yǔ)言,需要加入Python語(yǔ)言群的,請(qǐng)掃碼加我個(gè)人微信,備注【姓名-Python群】,我誠(chéng)邀你入群,大家學(xué)習(xí)和分享。


          ? ? 關(guān)于Python語(yǔ)言,有任何問(wèn)題或者想法,請(qǐng)留言或者加群討論。

          瀏覽 78
          點(diǎn)贊
          評(píng)論
          收藏
          分享

          手機(jī)掃一掃分享

          分享
          舉報(bào)
          評(píng)論
          圖片
          表情
          推薦
          點(diǎn)贊
          評(píng)論
          收藏
          分享

          手機(jī)掃一掃分享

          分享
          舉報(bào)
          <kbd id="afajh"><form id="afajh"></form></kbd>
          <strong id="afajh"><dl id="afajh"></dl></strong>
            <del id="afajh"><form id="afajh"></form></del>
                1. <th id="afajh"><progress id="afajh"></progress></th>
                  <b id="afajh"><abbr id="afajh"></abbr></b>
                  <th id="afajh"><progress id="afajh"></progress></th>
                  www.亚洲精品 | 日本熟妇视频 | 国产一级A片在线免费观看 | 精品人妻无码一区二区三区竹菊影视 | 亚洲色图欧美色图偷拍 |