這個模型識別車牌的準確率 簡直可怕!

文章目錄
一、前期工作
1.設置GPU
2.導入數(shù)據(jù)
3.數(shù)據(jù)可視化
4.標簽數(shù)字化
二、構建一個tf.data.Dataset1.預處理函數(shù)
2.加載數(shù)據(jù)
3.配置數(shù)據(jù)
三、搭建網(wǎng)絡模型
四、設置動態(tài)學習率
五、編譯
六、訓練
七、模型評估
八、保存和加載模型
九、預測
一、前期工作
本文將手把手教你用TensorFlow2實現(xiàn)車牌識別,整個項目的完整代碼都在文章了哈,大家按順序copy即可運行。
我的環(huán)境:
語言環(huán)境:Python3.6.5 編譯器:jupyter notebook 深度學習環(huán)境:TensorFlow2.4.1 數(shù)據(jù):https://pan.baidu.com/s/1rnnRok-4fxFuWJrwB4ls9Q 提取碼:povi
1.設置GPU
如果使用的是CPU可以注釋掉這部分的代碼,不影響運行。
import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")
if gpus:
tf.config.experimental.set_memory_growth(gpus[0], True) #設置GPU顯存用量按需使用
tf.config.set_visible_devices([gpus[0]],"GPU")
2.導入數(shù)據(jù)
import matplotlib.pyplot as plt
# 支持中文
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用來正常顯示中文標簽
plt.rcParams['axes.unicode_minus'] = False # 用來正常顯示負號
import os,PIL,random,pathlib
# 設置隨機種子盡可能使結果可以重現(xiàn)
import numpy as np
np.random.seed(1)
# 設置隨機種子盡可能使結果可以重現(xiàn)
import tensorflow as tf
tf.random.set_seed(1)
data_dir = "D:/jupyter notebook/DL-100-days/datasets/015_licence_plate"
data_dir = pathlib.Path(data_dir)
pictures_paths = list(data_dir.glob('*'))
pictures_paths = [str(path) for path in pictures_paths]
pictures_paths[:3]
['D:\\jupyter notebook\\DL-100-days\\datasets\\015_licence_plate\\000000000_藏WP66B0.jpg',
'D:\\jupyter notebook\\DL-100-days\\datasets\\015_licence_plate\\000000001_津D8Z15T.jpg',
'D:\\jupyter notebook\\DL-100-days\\datasets\\015_licence_plate\\000000002_陜Z813VB.jpg']
image_count = len(list(pictures_paths))
print("圖片總數(shù)為:",image_count)
圖片總數(shù)為:619
# 獲取數(shù)據(jù)標簽
all_label_names = [path.split("_")[2].split(".")[0] for path in pictures_paths]
all_label_names[:3]
['藏WP66B0', '津D8Z15T', '陜Z813VB']
3.數(shù)據(jù)可視化
plt.figure(figsize=(10,5))
plt.suptitle("數(shù)據(jù)示例",fontsize=15)
for i in range(20):
plt.subplot(5,4,i+1)
plt.xticks([])
plt.yticks([])
plt.grid(False)
# 顯示圖片
images = plt.imread(pictures_paths[i])
plt.imshow(images)
# 顯示標簽
plt.xlabel(all_label_names[i],fontsize=13)
plt.show()
4.標簽數(shù)字化
char_enum = ["京","滬","津","渝","冀","晉","蒙","遼","吉","黑","蘇","浙","皖","閩","贛","魯",\
"豫","鄂","湘","粵","桂","瓊","川","貴","云","藏","陜","甘","青","寧","新","軍","使"]
number = [str(i) for i in range(0, 10)] # 0 到 9 的數(shù)字
alphabet = [chr(i) for i in range(65, 91)] # A 到 Z 的字母
char_set = char_enum + number + alphabet
char_set_len = len(char_set)
label_name_len = len(all_label_names[0])
# 將字符串數(shù)字化
def text2vec(text):
vector = np.zeros([label_name_len, char_set_len])
for i, c in enumerate(text):
idx = char_set.index(c)
vector[i][idx] = 1.0
return vector
all_labels = [text2vec(i) for i in all_label_names]
二、構建一個tf.data.Dataset
1.預處理函數(shù)
def preprocess_image(image):
image = tf.image.decode_jpeg(image, channels=1)
image = tf.image.resize(image, [50, 200])
return image/255.0
def load_and_preprocess_image(path):
image = tf.io.read_file(path)
return preprocess_image(image)
2.加載數(shù)據(jù)
構建 tf.data.Dataset 最簡單的方法就是使用 from_tensor_slices 方法。
AUTOTUNE = tf.data.experimental.AUTOTUNE
path_ds = tf.data.Dataset.from_tensor_slices(pictures_paths)
image_ds = path_ds.map(load_and_preprocess_image, num_parallel_calls=AUTOTUNE)
label_ds = tf.data.Dataset.from_tensor_slices(all_labels)
image_label_ds = tf.data.Dataset.zip((image_ds, label_ds)).shuffle(1000)
image_label_ds
<ShuffleDataset shapes: ((50, 200, 1), (7, 69)), types: (tf.float32, tf.float64)>
train_ds = image_label_ds.take(550) # 前1000個batch
val_ds = image_label_ds.skip(550) # 跳過前1000,選取后面的
3.配置數(shù)據(jù)
先復習一下prefetch()函數(shù)。prefetch()功能詳細介紹:CPU 正在準備數(shù)據(jù)時,加速器處于空閑狀態(tài)。相反,當加速器正在訓練模型時,CPU 處于空閑狀態(tài)。因此,訓練所用的時間是 CPU 預處理時間和加速器訓練時間的總和。prefetch()將訓練步驟的預處理和模型執(zhí)行過程重疊到一起。當加速器正在執(zhí)行第 N 個訓練步時,CPU 正在準備第 N+1 步的數(shù)據(jù)。這樣做不僅可以最大限度地縮短訓練的單步用時(而不是總用時),而且可以縮短提取和轉(zhuǎn)換數(shù)據(jù)所需的時間。如果不使用prefetch(),CPU 和 GPU/TPU 在大部分時間都處于空閑狀態(tài):
使用prefetch()可顯著減少空閑時間:
BATCH_SIZE = 16
train_ds = train_ds.batch(BATCH_SIZE)
train_ds = train_ds.prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.batch(BATCH_SIZE)
val_ds = val_ds.prefetch(buffer_size=AUTOTUNE)
val_ds
<PrefetchDataset shapes: ((None, 50, 200, 1), (None, 7, 69)), types: (tf.float32, tf.float64)>
三、搭建網(wǎng)絡模型
目前這里主要是帶大家跑通代碼、整理一下思路,大家可以自行優(yōu)化網(wǎng)絡結構、調(diào)整模型參數(shù)。后續(xù)我也會針對性的出一些調(diào)優(yōu)的案例的。
from tensorflow.keras import datasets, layers, models
model = models.Sequential([
layers.Conv2D(32, (3, 3), activation='relu', input_shape=(50, 200, 1)),#卷積層1,卷積核3*3
layers.MaxPooling2D((2, 2)), #池化層1,2*2采樣
layers.Conv2D(64, (3, 3), activation='relu'), #卷積層2,卷積核3*3
layers.MaxPooling2D((2, 2)), #池化層2,2*2采樣
layers.Flatten(), #Flatten層,連接卷積層與全連接層
# layers.Dense(1000, activation='relu'), #全連接層,特征進一步提取
layers.Dense(1000, activation='relu'), #全連接層,特征進一步提取
# layers.Dropout(0.2),
layers.Dense(label_name_len * char_set_len),
layers.Reshape([label_name_len, char_set_len]),
layers.Softmax() #輸出層,輸出預期結果
])
# 打印網(wǎng)絡結構
model.summary()
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d (Conv2D) (None, 48, 198, 32) 320
_________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 24, 99, 32) 0
_________________________________________________________________
conv2d_1 (Conv2D) (None, 22, 97, 64) 18496
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 11, 48, 64) 0
_________________________________________________________________
flatten (Flatten) (None, 33792) 0
_________________________________________________________________
dense (Dense) (None, 1000) 33793000
_________________________________________________________________
dense_1 (Dense) (None, 483) 483483
_________________________________________________________________
reshape (Reshape) (None, 7, 69) 0
_________________________________________________________________
softmax (Softmax) (None, 7, 69) 0
=================================================================
Total params: 34,295,299
Trainable params: 34,295,299
Non-trainable params: 0
_________________________________________________________________
四、設置動態(tài)學習率
這里先羅列一下學習率大與學習率小的優(yōu)缺點。
學習率大
優(yōu)點:1、加快學習速率。2、有助于跳出局部最優(yōu)值。 缺點:1、導致模型訓練不收斂。2、單單使用大學習率容易導致模型不精確。 學習率小
優(yōu)點:1、有助于模型收斂、模型細化。2、提高模型精度。 缺點:1、很難跳出局部最優(yōu)值。2、收斂緩慢。
注意:這里設置的動態(tài)學習率為:指數(shù)衰減型(ExponentialDecay)。在每一個epoch開始前,學習率(learning_rate)都將會重置為初始學習率(initial_learning_rate),然后再重新開始衰減。計算公式如下:
“learning_rate =
initial_learning_rate * decay_rate ^ (step / decay_steps)
”
# 設置初始學習率
initial_learning_rate = 1e-3
lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
initial_learning_rate,
decay_steps=50, # 敲黑板!??!這里是指 steps,不是指epochs
decay_rate=0.96, # lr經(jīng)過一次衰減就會變成 decay_rate*lr
staircase=True)
# 將指數(shù)衰減學習率送入優(yōu)化器
optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)
五、編譯
model.compile(optimizer=optimizer,
loss='categorical_crossentropy',
metrics=['accuracy'])
六、訓練
epochs = 20
history = model.fit(
train_ds,
validation_data=val_ds,
epochs=epochs
)
Epoch 1/20
35/35 [==============================] - 4s 27ms/step - loss: 3.8599 - accuracy: 0.0492 - val_loss: 3.3631 - val_accuracy: 0.0663
Epoch 2/20
35/35 [==============================] - 0s 9ms/step - loss: 3.3526 - accuracy: 0.0718 - val_loss: 3.2880 - val_accuracy: 0.0683
Epoch 3/20
35/35 [==============================] - 0s 9ms/step - loss: 3.2952 - accuracy: 0.0866 - val_loss: 3.1754 - val_accuracy: 0.1429
Epoch 4/20
35/35 [==============================] - 0s 9ms/step - loss: 3.1920 - accuracy: 0.1347 - val_loss: 3.0021 - val_accuracy: 0.2298
Epoch 5/20
35/35 [==============================] - 0s 12ms/step - loss: 2.9394 - accuracy: 0.2142 - val_loss: 2.3816 - val_accuracy: 0.3913
.......
Epoch 17/20
35/35 [==============================] - 0s 9ms/step - loss: 0.0191 - accuracy: 0.9984 - val_loss: 0.0141 - val_accuracy: 0.9979
Epoch 18/20
35/35 [==============================] - 0s 10ms/step - loss: 0.0115 - accuracy: 0.9997 - val_loss: 0.0126 - val_accuracy: 1.0000
Epoch 19/20
35/35 [==============================] - 0s 9ms/step - loss: 0.0094 - accuracy: 0.9992 - val_loss: 0.0120 - val_accuracy: 0.9959
Epoch 20/20
35/35 [==============================] - 0s 10ms/step - loss: 0.0070 - accuracy: 0.9997 - val_loss: 0.0051 - val_accuracy: 1.0000
七、模型評估
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs_range = range(epochs)
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
八、保存和加載模型
# 保存模型
model.save('model/15_model.h5')
# 加載模型
new_model = tf.keras.models.load_model('model/15_model.h5')
九、預測
def vec2text(vec):
"""
還原標簽(向量->字符串)
"""
text = []
for i, c in enumerate(vec):
text.append(char_set[c])
return "".join(text)
plt.figure(figsize=(10, 8)) # 圖形的寬為10高為8
for images, labels in val_ds.take(1):
for i in range(6):
ax = plt.subplot(5, 2, i + 1)
# 顯示圖片
plt.imshow(images[i])
# 需要給圖片增加一個維度
img_array = tf.expand_dims(images[i], 0)
# 使用模型預測驗證碼
predictions = model.predict(img_array)
plt.title(vec2text(np.argmax(predictions, axis=2)[0]),fontsize=15)
plt.axis("off")



