<kbd id="afajh"><form id="afajh"></form></kbd>
<strong id="afajh"><dl id="afajh"></dl></strong>
    <del id="afajh"><form id="afajh"></form></del>
        1. <th id="afajh"><progress id="afajh"></progress></th>
          <b id="afajh"><abbr id="afajh"></abbr></b>
          <th id="afajh"><progress id="afajh"></progress></th>

          【深度學習】CVPR 2024醫(yī)學影像AI相關論文!

          共 19007字,需瀏覽 39分鐘

           ·

          2024-06-18 11:00

          轉(zhuǎn)自:第一作者EDesk
          2 0 24 

           CVPR (CCF-A).
          ● 來源:https://github.com/MedAIerHHL/CVPR-MIA (持續(xù)更新,已授權)

          CVPR-MIA




          Image Reconstruction (圖像重建) 

          • QN-Mixer: A Quasi-Newton MLP-Mixer Model for Sparse-View CT Reconstruction.
            • 中文:QN-Mixer:用于稀疏視圖CT重建的擬牛頓MLP-Mixer模型
            • Paper: https://arxiv.org/abs/2402.17951v1
            • Project: https://towzeur.github.io/QN-Mixer/
          • Fully Convolutional Slice-to-Volume Reconstruction for Single-Stack MRI.
            • 中文:單棧MRI的全卷積切片到體積重建
            • Paper: https://arxiv.org/abs/2312.03102
            • Code: http://github.com/seannz/svr
          • Structure-Aware Sparse-View X-ray 3D Reconstruction.
            • 中文:結構感知稀疏視圖 X 射線 3D 重建
            • Paper: https://arxiv.org/abs/2311.10959
            • Code: https://github.com/caiyuanhao1998/SAX-NeRF
          • Progressive Divide-and-Conquer via Subsampling Decomposition for Accelerated MRI.
            • 中文:通過子采樣分解的漸進分治以加速MRI
            • Paper: https://arxiv.org/abs/2403.10064
            • Code: https://github.com/ChongWang1024/PDAC

           


          Image Resolution (圖像超分) 

          • Learning Large-Factor EM Image Super-Resolution with Generative Priors
            • 中文:使用生成先驗學習大因子電磁圖像超分辨率
            • Paper: https://openaccess.thecvf.com/content/CVPR2024/papers/Shou_Learning_Large-Factor_EM_Image_Super-Resolution_with_Generative_Priors_CVPR_2024_paper.pdf
            • Code: https://github.com/jtshou/GPEMSR
            • Video: https://youtu.be/LNSLQM5-YcM
          • CycleINR: Cycle Implicit Neural Representation for Arbitrary-Scale Volumetric Super-Resolution of Medical Data
            • 中文:CycleINR:任意尺度醫(yī)學數(shù)據(jù)體素超分辨率的循環(huán)隱式神經(jīng)表示    
            • Paper: https://arxiv.org/abs/2404.04878v1   



          Image Registration (圖像配準)    


          • Modality-Agnostic Structural Image Representation Learning for Deformable Multi-Modality Medical Image Registration 
            • 中文:適用于可變形多模態(tài)醫(yī)學圖像配準的模態(tài)無關結構圖像表示學習

            • Paper: https://arxiv.org/abs/2402.18933

          • [Oral & Best Paper Candidate!!!] Correlation-aware Coarse-to-fine MLPs for Deformable Medical Image Registration
            • 中文:基于相關性的粗到細MLP用于可變形醫(yī)學圖像配準
            • Paper: https://arxiv.org/abs/2406.00123
            • Code: https://github.com/jungeun122333/UVI-Net

           


          Image Segmentation (圖像分割)

          • PrPSeg: Universal Proposition Learning for Panoramic Renal Pathology Segmentation
            • 中文:PrPSeg:全景腎病病理分割的通用命題學習
            • Paper: https://arxiv.org/abs/2402.19286
          • Versatile Medical Image Segmentation Learned from Multi-Source Datasets via Model Self-Disambiguation
            • 中文:通過模型自我消歧學習的多功能醫(yī)學圖像分割,來自多源數(shù)據(jù)集
            • Paper: https://arxiv.org/abs/2311.10696
          • Each Test Image Deserves A Specific Prompt: Continual Test-Time Adaptation for 2D Medical Image Segmentation
            • 中文:每個測試圖像應得到特定提示:2D醫(yī)學圖像分割的持續(xù)測試時適應
            • Paper: https://arxiv.org/abs/2311.18363
            • Code: https://github.com/Chen-Ziyang/VPTTA
          • One-Prompt to Segment All Medical Images
            • 中文:一提示分割所有醫(yī)學圖像
            • Paper: https://arxiv.org/abs/2305.10300
            • Code: https://github.com/WuJunde/PromptUNet/tree/main
          • Modality-agnostic Domain Generalizable Medical Image Segmentation by Multi-Frequency in Multi-Scale Attention
            • 中文:基于多尺度注意力的多頻率模態(tài)無關醫(yī)學圖像分割
            • Paper: https://arxiv.org/abs/2405.06284
            • Code Project: https://skawngus1111.github.io/MADGNet_project/
          • Diversified and Personalized Multi-rater Medical Image Segmentation
            • 中文:多樣化和個性化的多評分員醫(yī)學圖像分割
            • Paper: https://arxiv.org/pdf/2212.00601
            • Code: https://github.com/ycwu1997/D-Persona
          • MAPSeg: Unified Unsupervised Domain Adaptation for Heterogeneous Medical Image Segmentation Based on 3D Masked Autoencoding and Pseudo-Labeling
            • 中文:基于3D遮罩自動編碼和偽標簽的MAPSeg:異構醫(yī)學圖像分割的統(tǒng)一無監(jiān)督域適應
            • Paper: https://arxiv.org/abs/2303.09373    
          • Adaptive Bidirectional Displacement for Semi-Supervised Medical Image Segmentation
            • 中文:半監(jiān)督醫(yī)學圖像分割的自適應雙向位移
            • Paper: https://arxiv.org/abs/2405.00378
            • Code: https://github.com/chy-upc/ABD
          • Cross-dimension Affinity Distillation for 3D EM Neuron Segmentation
            • 中文:3D EM神經(jīng)元分割的跨維度親和力蒸餾
            • Paper: https://openaccess.thecvf.com/content/CVPR2024/papers/Liu_Cross-Dimension_Affinity_Distillation_for_3D_EM_Neuron_Segmentation_CVPR_2024_paper.pdf
            • Code: https://github.com/liuxy1103/CAD
          • ToNNO: Tomographic Reconstruction of a Neural Network’s Output for Weakly Supervised Segmentation of 3D Medical Images.
            • 中文:ToNNO:神經(jīng)網(wǎng)絡輸出的斷層重建用于弱監(jiān)督3D醫(yī)學圖像分割
            • Paper: https://arxiv.org/abs/2405.06880
          • Versatile Medical Image Segmentation Learned from Multi-Source Datasets via Model Self-Disambiguation
            • 中文:通過模型自我消歧學習的多功能醫(yī)學圖像分割,來自多源數(shù)據(jù)集
            • Paper: https://arxiv.org/abs/2311.10696
          • Teeth-SEG: An Efficient Instance Segmentation Framework for Orthodontic Treatment based on Anthropic Prior Knowledge
            • 中文:基于人類先驗知識的正畸治療高效實例分割框架
            • Paper: https://arxiv.org/abs/2404.01013
          • Tyche: Stochastic in Context Learning for Universal Medical Image Segmentation
            • 中文:Tyche:上下文中的隨機學習用于通用醫(yī)學圖像分割
            • Paper: https://arxiv.org/abs/2401.13650
            • Code: https://github.com/mariannerakic/tyche/
          • Constructing and Exploring Intermediate Domains in Mixed Domain Semi-supervised Medical Image Segmentation
            • 中文:混合域半監(jiān)督醫(yī)學圖像分割中中間域的構建與探索
            • Paper: https://arxiv.org/abs/2404.08951
            • Code: https://github.com/MQinghe/MiDSS
          • S2VNet: Universal Multi-Class Medical Image Segmentation via Clustering-based Slice-to-Volume Propagation
            • 中文:S2VNet:通過聚類基礎的切片到體積傳播實現(xiàn)通用多類別醫(yī)學圖像分割
            • Paper: https://arxiv.org/abs/2403.16646
            • Code: https://github.com/dyh127/S2VNet
          • EMCAD: Efficient Multi-scale Convolutional Attention Decoding for Medical Image Segmentation.
            • 中文:EMCAD:醫(yī)學圖像分割的高效多尺度卷積注意力解碼
            • Paper: https://arxiv.org/abs/2405.06880
            • Code: https://github.com/SLDGroup/EMCAD
          • Training Like a Medical Resident: Context-Prior Learning Toward Universal Medical Image Segmentation.
            • 中文:像住院醫(yī)生一樣訓練:情境先驗學習導向的通用醫(yī)學圖像分割    
            • Paper: https://arxiv.org/abs/2306.02416
            • Code: https://github.com/yhygao/universal-medical-image-segmentation
          • ZePT: Zero-Shot Pan-Tumor Segmentation via Query-Disentangling and Self-Prompting
            • Paper: https://arxiv.org/abs/2312.04964
          • [Oral!!!] Correlation-aware Coarse-to-fine MLPs for Deformable Medical Image Registration
            • Paper: https://github.com/dengxl0520/MemSAM/blob/main/paper.pdf
            • Code: https://github.com/dengxl0520/MemSAM/tree/main
          • PH-Net: Semi-Supervised Breast Lesion Segmentation via Patch-wise Hardness
            • Paper: https://openaccess.thecvf.com/content/CVPR2024/papers/Jiang_PH-Net_Semi-Supervised_Breast_Lesion_Segmentation_via_Patch-wise_Hardness_CVPR_2024_paper.pdf
            • Code: https://github.com/jjjsyyy/PH-Net
            • Video: https://cvpr.thecvf.com/virtual/2024/poster/30539

           


          Image Generation (圖像生成)  

          • Learned representation-guided diffusion models for large-image generation
            • 中文:用于大型圖像生成的學習表示指導的擴散模型
            • Paper: https://arxiv.org/abs/2312.07330
          • MedM2G: Unifying Medical Multi-Modal Generation via Cross-Guided Diffusion with Visual Invariant
            • 中文:MedM2G:通過視覺不變的交叉引導擴散統(tǒng)一醫(yī)療多模式生成
            • Paper: https://arxiv.org/html/2403.04290v1
          • Towards Generalizable Tumor Synthesis
            • 中文:邁向泛化腫瘤合成
            • Paper: https://arxiv.org/abs/2402.19470v1
            • Code: https://github.com/MrGiovanni/DiffTumor
          • Data-Efficient Unsupervised Interpolation Without Any Intermediate Frame for 4D Medical Images
            • 中文:無需任何中間幀的4D醫(yī)學圖像的數(shù)據(jù)高效無監(jiān)督插值
            • Paper: https://arxiv.org/abs/2404.01464
            • Code: https://github.com/jungeun122333/UVI-Net

           


          Image Classification (圖像分類)  

          • Systematic comparison of semi-supervised and self-supervised learning for medical image classification
            • 中文:醫(yī)學圖像分類中半監(jiān)督和自監(jiān)督學習的系統(tǒng)比較
            • Paper: https://arxiv.org/abs/2307.08919v2
            • Code: https://github.com/tufts-ml/SSL-vs-SSL-benchmark
          • Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images
            • 中文:適應視覺語言模型以在醫(yī)學圖像中實現(xiàn)泛化的異常檢測
            • Paper: https://arxiv.org/abs/2403.12570
            • Code: https://github.com/MediaBrain-SJTU/MVFA-AD  
          • FocusMAE: Gallbladder Cancer Detection from Ultrasound Videos with Focused Masked Autoencoders
            • 中文:FocusMAE:聚焦掩蔽自編碼器從超聲視頻中檢測膽囊癌
            • Paper: https://arxiv.org/abs/2403.08848
            • Code: https://github.com/sbasu276/FocusMAE

           


          Federated Learning(聯(lián)邦學習) 

          • Think Twice Before Selection: Federated Evidential Active Learning for Medical Image Analysis with Domain Shifts
            • 中文:選擇前請三思:帶有領域轉(zhuǎn)移的醫(yī)學圖像分析的聯(lián)邦證據(jù)主動學習
            • Paper: https://arxiv.org/abs/2312.02567   

                


          Medical Pre-training $ Foundation Model(預訓練&基礎模型)

          • VoCo: A Simple-yet-Effective Volume Contrastive Learning Framework for 3D Medical Image Analysis
            • 中文:VoCo:一個簡單而有效的三維醫(yī)學圖像分析的體對比學習框架
            • Paper: https://arxiv.org/abs/2402.17300
            • Code: https://github.com/Luffy03/VoCo
          • MLIP: Enhancing Medical Visual Representation with Divergence Encoder and Knowledge-guided Contrastive Learning
            • 中文:MLIP:使用發(fā)散編碼器和知識引導的對比學習增強醫(yī)學視覺表示
            • Paper: https://arxiv.org/abs/2402.02045
          • [Highlight!] Continual Self-supervised Learning: Towards Universal Multi-modal Medical Data Representation Learning
            • 中文:持續(xù)自我監(jiān)督學習:走向通用的多模態(tài)醫(yī)學數(shù)據(jù)表示學習
            • Paper:https://arxiv.org/abs/2311.17597
            • Code: https://github.com/yeerwen/MedCoSS
          • Bootstrapping Chest CT Image Understanding by Distilling Knowledge from X-ray Expert Models
            • 中文:從X射線專家模型中提煉知識以啟動胸部CT圖像理解
            • Paper: https://arxiv.org/abs/2404.04936v1
          • Unleashing the Potential of SAM for Medical Adaptation via Hierarchical Decoding
            • Paper: https://arxiv.org/abs/2403.18271
            • Code: https://github.com/Cccccczh404/H-SAM
          • Low-Rank Knowledge Decomposition for Medical Foundation Models
            • 中文:通過層次解碼釋放SAM在醫(yī)學適應中的潛力
            • Paper: https://arxiv.org/abs/2404.17184
            • Code: https://github.com/MediaBrain-SJTU/LoRKD

           


          Vision-Language Model (視覺-語言) 

          • PairAug: What Can Augmented Image-Text Pairs Do for Radiology?
            • 中文:PairAug:增強的圖像文本對對放射學能做什么?
            • Paper: https://arxiv.org/abs/2404.04960
            • Code: https://github.com/YtongXie/PairAug   
          • Decomposing Disease Descriptions for Enhanced Pathology Detection: A Multi-Aspect Vision-Language Matching Framework
            • 中文:疾病描述分解以增強病理檢測:一個多方面視覺語言匹配框架
            • Paper: https://arxiv.org/abs/2403.07636
            • Code: https://github.com/HieuPhan33/MAVL
          • Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images
            • 中文:適應視覺語言模型以在醫(yī)學圖像中實現(xiàn)泛化的異常檢測
            • Paper: https://arxiv.org/abs/2403.12570
            • Code: https://github.com/MediaBrain-SJTU/MVFA-AD
          • OmniMedVQA: A New Large-Scale Comprehensive Evaluation Benchmark for Medical LVLM
            • 中文:OmniMedVQA:一個新的大規(guī)模全面評估基準,針對醫(yī)學LVLM
            • Paper: https://arxiv.org/abs/2402.09181
          • CARZero: Cross-Attention Alignment for Radiology Zero-Shot Classification
            • 中文:CARZero:放射學零樣本分類的交叉注意力對齊
            • Paper: https://arxiv.org/abs/2402.17417
          • FairCLIP: Harnessing Fairness in Vision-Language Learning.
            • 中文:FairCLIP:在視覺語言學習中利用公平性
            • Paper: https://arxiv.org/abs/2403.19949
            • Code: https://github.com/Harvard-Ophthalmology-AI-Lab/FairCLIP

           


          Computational Pathology (計算病理)  

          • Generalizable Whole Slide Image Classification with Fine-Grained Visual-Semantic Interaction
            • 中文:具有精細視覺語義交互的可泛化全片圖像分類
            • Paper: https://arxiv.org/abs/2402.19326
          • Feature Re-Embedding: Towards Foundation Model-Level Performance in Computational Pathology
            • 中文:特征再嵌入:朝著計算病理學的基礎模型級性能邁進
            • Paper: https://arxiv.org/abs/2402.17228
            • Code: https://github.com/DearCaat/RRT-MIL
          • PrPSeg: Universal Proposition Learning for Panoramic Renal Pathology Segmentation
            • 中文:PrPSeg:全景腎病病理分割的通用命題學習
            • Paper: https://arxiv.org/abs/2402.19286
          • ChAda-ViT: Channel Adaptive Attention for Joint Representation Learning of Heterogeneous Microscopy Images
            • 中文:ChAda-ViT:通道自適應注意力用于異質(zhì)顯微圖像的聯(lián)合表示學習
            • Paper: https://arxiv.org/abs/2311.15264
            • Code: https://github.com/nicoboou/chada_vit
          • SI-MIL: Taming Deep MIL for Self-Interpretability in Gigapixel Histopathology    
            • 中文:SI-MIL:馴服深度MIL以實現(xiàn)千兆像素組織病理學的自我解釋性
            • Paper: https://arxiv.org/abs/2312.15010
          • Transcriptomics-guided Slide Representation Learning in Computational Pathology.
            • 中文:計算病理學中轉(zhuǎn)錄組學指導的切片表示學習
            • Paper: https://arxiv.org/abs/2405.11618
            • Code: https://github.com/mahmoodlab/TANGLE

           


          Others

          • Seeing Unseen: Discover Novel Biomedical Concepts via Geometry-Constrained Probabilistic Modeling
            • 中文:看見未見:通過幾何約束的概率建模發(fā)現(xiàn)新型生物醫(yī)學概念
            • Paper: https://arxiv.org/html/2403.01053v2   



                
             
                
                    
                       
          往期精彩回顧




          • 交流群

          歡迎加入機器學習愛好者微信群一起和同行交流,目前有機器學習交流群、博士群、博士申報交流、CV、NLP等微信群,請掃描下面的微信號加群,備注:”昵稱-學校/公司-研究方向“,例如:”張小明-浙大-CV“。請按照格式備注,否則不予通過。添加成功后會根據(jù)研究方向邀請進入相關微信群。請勿在群內(nèi)發(fā)送廣告,否則會請出群,謝謝理解~(也可以加入機器學習交流qq群772479961



          瀏覽 101
          點贊
          評論
          收藏
          分享

          手機掃一掃分享

          分享
          舉報
          評論
          圖片
          表情
          推薦
          點贊
          評論
          收藏
          分享

          手機掃一掃分享

          分享
          舉報
          <kbd id="afajh"><form id="afajh"></form></kbd>
          <strong id="afajh"><dl id="afajh"></dl></strong>
            <del id="afajh"><form id="afajh"></form></del>
                1. <th id="afajh"><progress id="afajh"></progress></th>
                  <b id="afajh"><abbr id="afajh"></abbr></b>
                  <th id="afajh"><progress id="afajh"></progress></th>
                  69福利一二 | 韩国啪啪网站 | 黄色在线观看网站 | 欧美xxxx操 | 一区二区三区四区五区六区在线 |