【深度學習】CVPR 2024醫(yī)學影像AI相關論文!
共 19007字,需瀏覽 39分鐘
·
2024-06-18 11:00
CVPR-MIA
Image Reconstruction (圖像重建)
-
QN-Mixer: A Quasi-Newton MLP-Mixer Model for Sparse-View CT Reconstruction.
-
中文:QN-Mixer:用于稀疏視圖CT重建的擬牛頓MLP-Mixer模型 -
Paper: https://arxiv.org/abs/2402.17951v1 -
Project: https://towzeur.github.io/QN-Mixer/
-
Fully Convolutional Slice-to-Volume Reconstruction for Single-Stack MRI.
-
中文:單棧MRI的全卷積切片到體積重建 -
Paper: https://arxiv.org/abs/2312.03102 -
Code: http://github.com/seannz/svr
-
Structure-Aware Sparse-View X-ray 3D Reconstruction.
-
中文:結構感知稀疏視圖 X 射線 3D 重建 -
Paper: https://arxiv.org/abs/2311.10959 -
Code: https://github.com/caiyuanhao1998/SAX-NeRF
-
Progressive Divide-and-Conquer via Subsampling Decomposition for Accelerated MRI.
-
中文:通過子采樣分解的漸進分治以加速MRI -
Paper: https://arxiv.org/abs/2403.10064 -
Code: https://github.com/ChongWang1024/PDAC
Image Resolution (圖像超分)
-
Learning Large-Factor EM Image Super-Resolution with Generative Priors
-
中文:使用生成先驗學習大因子電磁圖像超分辨率 -
Paper: https://openaccess.thecvf.com/content/CVPR2024/papers/Shou_Learning_Large-Factor_EM_Image_Super-Resolution_with_Generative_Priors_CVPR_2024_paper.pdf -
Code: https://github.com/jtshou/GPEMSR -
Video: https://youtu.be/LNSLQM5-YcM
-
CycleINR: Cycle Implicit Neural Representation for Arbitrary-Scale Volumetric Super-Resolution of Medical Data
-
中文:CycleINR:任意尺度醫(yī)學數(shù)據(jù)體素超分辨率的循環(huán)隱式神經(jīng)表示 -
Paper: https://arxiv.org/abs/2404.04878v1
Image Registration (圖像配準)
-
Modality-Agnostic Structural Image Representation Learning for Deformable Multi-Modality Medical Image Registration
中文:適用于可變形多模態(tài)醫(yī)學圖像配準的模態(tài)無關結構圖像表示學習
Paper: https://arxiv.org/abs/2402.18933
-
[Oral & Best Paper Candidate!!!] Correlation-aware Coarse-to-fine MLPs for Deformable Medical Image Registration
-
中文:基于相關性的粗到細MLP用于可變形醫(yī)學圖像配準 -
Paper: https://arxiv.org/abs/2406.00123 -
Code: https://github.com/jungeun122333/UVI-Net
Image Segmentation (圖像分割)
-
PrPSeg: Universal Proposition Learning for Panoramic Renal Pathology Segmentation
-
中文:PrPSeg:全景腎病病理分割的通用命題學習 -
Paper: https://arxiv.org/abs/2402.19286
-
Versatile Medical Image Segmentation Learned from Multi-Source Datasets via Model Self-Disambiguation
-
中文:通過模型自我消歧學習的多功能醫(yī)學圖像分割,來自多源數(shù)據(jù)集 -
Paper: https://arxiv.org/abs/2311.10696
-
Each Test Image Deserves A Specific Prompt: Continual Test-Time Adaptation for 2D Medical Image Segmentation
-
中文:每個測試圖像應得到特定提示:2D醫(yī)學圖像分割的持續(xù)測試時適應 -
Paper: https://arxiv.org/abs/2311.18363 -
Code: https://github.com/Chen-Ziyang/VPTTA
-
One-Prompt to Segment All Medical Images
-
中文:一提示分割所有醫(yī)學圖像 -
Paper: https://arxiv.org/abs/2305.10300 -
Code: https://github.com/WuJunde/PromptUNet/tree/main
-
Modality-agnostic Domain Generalizable Medical Image Segmentation by Multi-Frequency in Multi-Scale Attention
-
中文:基于多尺度注意力的多頻率模態(tài)無關醫(yī)學圖像分割 -
Paper: https://arxiv.org/abs/2405.06284 -
Code Project: https://skawngus1111.github.io/MADGNet_project/
-
Diversified and Personalized Multi-rater Medical Image Segmentation
-
中文:多樣化和個性化的多評分員醫(yī)學圖像分割 -
Paper: https://arxiv.org/pdf/2212.00601 -
Code: https://github.com/ycwu1997/D-Persona
-
MAPSeg: Unified Unsupervised Domain Adaptation for Heterogeneous Medical Image Segmentation Based on 3D Masked Autoencoding and Pseudo-Labeling
-
中文:基于3D遮罩自動編碼和偽標簽的MAPSeg:異構醫(yī)學圖像分割的統(tǒng)一無監(jiān)督域適應 -
Paper: https://arxiv.org/abs/2303.09373
-
Adaptive Bidirectional Displacement for Semi-Supervised Medical Image Segmentation
-
中文:半監(jiān)督醫(yī)學圖像分割的自適應雙向位移 -
Paper: https://arxiv.org/abs/2405.00378 -
Code: https://github.com/chy-upc/ABD
-
Cross-dimension Affinity Distillation for 3D EM Neuron Segmentation
-
中文:3D EM神經(jīng)元分割的跨維度親和力蒸餾 -
Paper: https://openaccess.thecvf.com/content/CVPR2024/papers/Liu_Cross-Dimension_Affinity_Distillation_for_3D_EM_Neuron_Segmentation_CVPR_2024_paper.pdf -
Code: https://github.com/liuxy1103/CAD
-
ToNNO: Tomographic Reconstruction of a Neural Network’s Output for Weakly Supervised Segmentation of 3D Medical Images.
-
中文:ToNNO:神經(jīng)網(wǎng)絡輸出的斷層重建用于弱監(jiān)督3D醫(yī)學圖像分割 -
Paper: https://arxiv.org/abs/2405.06880
-
Versatile Medical Image Segmentation Learned from Multi-Source Datasets via Model Self-Disambiguation
-
中文:通過模型自我消歧學習的多功能醫(yī)學圖像分割,來自多源數(shù)據(jù)集 -
Paper: https://arxiv.org/abs/2311.10696
-
Teeth-SEG: An Efficient Instance Segmentation Framework for Orthodontic Treatment based on Anthropic Prior Knowledge
-
中文:基于人類先驗知識的正畸治療高效實例分割框架 -
Paper: https://arxiv.org/abs/2404.01013
-
Tyche: Stochastic in Context Learning for Universal Medical Image Segmentation
-
中文:Tyche:上下文中的隨機學習用于通用醫(yī)學圖像分割 -
Paper: https://arxiv.org/abs/2401.13650 -
Code: https://github.com/mariannerakic/tyche/
-
Constructing and Exploring Intermediate Domains in Mixed Domain Semi-supervised Medical Image Segmentation
-
中文:混合域半監(jiān)督醫(yī)學圖像分割中中間域的構建與探索 -
Paper: https://arxiv.org/abs/2404.08951 -
Code: https://github.com/MQinghe/MiDSS
-
S2VNet: Universal Multi-Class Medical Image Segmentation via Clustering-based Slice-to-Volume Propagation -
中文:S2VNet:通過聚類基礎的切片到體積傳播實現(xiàn)通用多類別醫(yī)學圖像分割 -
Paper: https://arxiv.org/abs/2403.16646 -
Code: https://github.com/dyh127/S2VNet -
EMCAD: Efficient Multi-scale Convolutional Attention Decoding for Medical Image Segmentation.
-
中文:EMCAD:醫(yī)學圖像分割的高效多尺度卷積注意力解碼 -
Paper: https://arxiv.org/abs/2405.06880 -
Code: https://github.com/SLDGroup/EMCAD
-
Training Like a Medical Resident: Context-Prior Learning Toward Universal Medical Image Segmentation.
-
中文:像住院醫(yī)生一樣訓練:情境先驗學習導向的通用醫(yī)學圖像分割 -
Paper: https://arxiv.org/abs/2306.02416 -
Code: https://github.com/yhygao/universal-medical-image-segmentation
-
ZePT: Zero-Shot Pan-Tumor Segmentation via Query-Disentangling and Self-Prompting
-
Paper: https://arxiv.org/abs/2312.04964
-
[Oral!!!] Correlation-aware Coarse-to-fine MLPs for Deformable Medical Image Registration
-
Paper: https://github.com/dengxl0520/MemSAM/blob/main/paper.pdf -
Code: https://github.com/dengxl0520/MemSAM/tree/main
-
PH-Net: Semi-Supervised Breast Lesion Segmentation via Patch-wise Hardness
-
Paper: https://openaccess.thecvf.com/content/CVPR2024/papers/Jiang_PH-Net_Semi-Supervised_Breast_Lesion_Segmentation_via_Patch-wise_Hardness_CVPR_2024_paper.pdf -
Code: https://github.com/jjjsyyy/PH-Net -
Video: https://cvpr.thecvf.com/virtual/2024/poster/30539
Image Generation (圖像生成)
-
Learned representation-guided diffusion models for large-image generation
-
中文:用于大型圖像生成的學習表示指導的擴散模型 -
Paper: https://arxiv.org/abs/2312.07330
-
MedM2G: Unifying Medical Multi-Modal Generation via Cross-Guided Diffusion with Visual Invariant
-
中文:MedM2G:通過視覺不變的交叉引導擴散統(tǒng)一醫(yī)療多模式生成 -
Paper: https://arxiv.org/html/2403.04290v1
-
Towards Generalizable Tumor Synthesis
-
中文:邁向泛化腫瘤合成 -
Paper: https://arxiv.org/abs/2402.19470v1 -
Code: https://github.com/MrGiovanni/DiffTumor
-
Data-Efficient Unsupervised Interpolation Without Any Intermediate Frame for 4D Medical Images
-
中文:無需任何中間幀的4D醫(yī)學圖像的數(shù)據(jù)高效無監(jiān)督插值 -
Paper: https://arxiv.org/abs/2404.01464 -
Code: https://github.com/jungeun122333/UVI-Net
Image Classification (圖像分類)
-
Systematic comparison of semi-supervised and self-supervised learning for medical image classification
-
中文:醫(yī)學圖像分類中半監(jiān)督和自監(jiān)督學習的系統(tǒng)比較 -
Paper: https://arxiv.org/abs/2307.08919v2 -
Code: https://github.com/tufts-ml/SSL-vs-SSL-benchmark
-
Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images -
中文:適應視覺語言模型以在醫(yī)學圖像中實現(xiàn)泛化的異常檢測 -
Paper: https://arxiv.org/abs/2403.12570 -
Code: https://github.com/MediaBrain-SJTU/MVFA-AD -
FocusMAE: Gallbladder Cancer Detection from Ultrasound Videos with Focused Masked Autoencoders
-
中文:FocusMAE:聚焦掩蔽自編碼器從超聲視頻中檢測膽囊癌 -
Paper: https://arxiv.org/abs/2403.08848 -
Code: https://github.com/sbasu276/FocusMAE
Federated Learning(聯(lián)邦學習)
-
Think Twice Before Selection: Federated Evidential Active Learning for Medical Image Analysis with Domain Shifts
-
中文:選擇前請三思:帶有領域轉(zhuǎn)移的醫(yī)學圖像分析的聯(lián)邦證據(jù)主動學習 -
Paper: https://arxiv.org/abs/2312.02567
Medical Pre-training $ Foundation Model(預訓練&基礎模型)
-
VoCo: A Simple-yet-Effective Volume Contrastive Learning Framework for 3D Medical Image Analysis
-
中文:VoCo:一個簡單而有效的三維醫(yī)學圖像分析的體對比學習框架 -
Paper: https://arxiv.org/abs/2402.17300 -
Code: https://github.com/Luffy03/VoCo
-
MLIP: Enhancing Medical Visual Representation with Divergence Encoder and Knowledge-guided Contrastive Learning
-
中文:MLIP:使用發(fā)散編碼器和知識引導的對比學習增強醫(yī)學視覺表示 -
Paper: https://arxiv.org/abs/2402.02045
-
[Highlight!] Continual Self-supervised Learning: Towards Universal Multi-modal Medical Data Representation Learning
-
中文:持續(xù)自我監(jiān)督學習:走向通用的多模態(tài)醫(yī)學數(shù)據(jù)表示學習 -
Paper:https://arxiv.org/abs/2311.17597 -
Code: https://github.com/yeerwen/MedCoSS
-
Bootstrapping Chest CT Image Understanding by Distilling Knowledge from X-ray Expert Models
-
中文:從X射線專家模型中提煉知識以啟動胸部CT圖像理解 -
Paper: https://arxiv.org/abs/2404.04936v1
-
Unleashing the Potential of SAM for Medical Adaptation via Hierarchical Decoding
-
Paper: https://arxiv.org/abs/2403.18271 -
Code: https://github.com/Cccccczh404/H-SAM
-
Low-Rank Knowledge Decomposition for Medical Foundation Models
-
中文:通過層次解碼釋放SAM在醫(yī)學適應中的潛力 -
Paper: https://arxiv.org/abs/2404.17184 -
Code: https://github.com/MediaBrain-SJTU/LoRKD
Vision-Language Model (視覺-語言)
-
PairAug: What Can Augmented Image-Text Pairs Do for Radiology?
-
中文:PairAug:增強的圖像文本對對放射學能做什么? -
Paper: https://arxiv.org/abs/2404.04960 -
Code: https://github.com/YtongXie/PairAug
-
Decomposing Disease Descriptions for Enhanced Pathology Detection: A Multi-Aspect Vision-Language Matching Framework
-
中文:疾病描述分解以增強病理檢測:一個多方面視覺語言匹配框架 -
Paper: https://arxiv.org/abs/2403.07636 -
Code: https://github.com/HieuPhan33/MAVL
-
Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images
-
中文:適應視覺語言模型以在醫(yī)學圖像中實現(xiàn)泛化的異常檢測 -
Paper: https://arxiv.org/abs/2403.12570 -
Code: https://github.com/MediaBrain-SJTU/MVFA-AD
-
OmniMedVQA: A New Large-Scale Comprehensive Evaluation Benchmark for Medical LVLM
-
中文:OmniMedVQA:一個新的大規(guī)模全面評估基準,針對醫(yī)學LVLM -
Paper: https://arxiv.org/abs/2402.09181
-
CARZero: Cross-Attention Alignment for Radiology Zero-Shot Classification
-
中文:CARZero:放射學零樣本分類的交叉注意力對齊 -
Paper: https://arxiv.org/abs/2402.17417
-
FairCLIP: Harnessing Fairness in Vision-Language Learning.
-
中文:FairCLIP:在視覺語言學習中利用公平性 -
Paper: https://arxiv.org/abs/2403.19949 -
Code: https://github.com/Harvard-Ophthalmology-AI-Lab/FairCLIP
Computational Pathology (計算病理)
-
Generalizable Whole Slide Image Classification with Fine-Grained Visual-Semantic Interaction
-
中文:具有精細視覺語義交互的可泛化全片圖像分類 -
Paper: https://arxiv.org/abs/2402.19326
-
Feature Re-Embedding: Towards Foundation Model-Level Performance in Computational Pathology
-
中文:特征再嵌入:朝著計算病理學的基礎模型級性能邁進 -
Paper: https://arxiv.org/abs/2402.17228 -
Code: https://github.com/DearCaat/RRT-MIL
-
PrPSeg: Universal Proposition Learning for Panoramic Renal Pathology Segmentation
-
中文:PrPSeg:全景腎病病理分割的通用命題學習 -
Paper: https://arxiv.org/abs/2402.19286
-
ChAda-ViT: Channel Adaptive Attention for Joint Representation Learning of Heterogeneous Microscopy Images
-
中文:ChAda-ViT:通道自適應注意力用于異質(zhì)顯微圖像的聯(lián)合表示學習 -
Paper: https://arxiv.org/abs/2311.15264 -
Code: https://github.com/nicoboou/chada_vit
-
SI-MIL: Taming Deep MIL for Self-Interpretability in Gigapixel Histopathology
-
中文:SI-MIL:馴服深度MIL以實現(xiàn)千兆像素組織病理學的自我解釋性 -
Paper: https://arxiv.org/abs/2312.15010
-
Transcriptomics-guided Slide Representation Learning in Computational Pathology.
-
中文:計算病理學中轉(zhuǎn)錄組學指導的切片表示學習 -
Paper: https://arxiv.org/abs/2405.11618 -
Code: https://github.com/mahmoodlab/TANGLE
Others
-
Seeing Unseen: Discover Novel Biomedical Concepts via Geometry-Constrained Probabilistic Modeling
-
中文:看見未見:通過幾何約束的概率建模發(fā)現(xiàn)新型生物醫(yī)學概念 -
Paper: https://arxiv.org/html/2403.01053v2
往期精彩回顧
交流群
歡迎加入機器學習愛好者微信群一起和同行交流,目前有機器學習交流群、博士群、博士申報交流、CV、NLP等微信群,請掃描下面的微信號加群,備注:”昵稱-學校/公司-研究方向“,例如:”張小明-浙大-CV“。請按照格式備注,否則不予通過。添加成功后會根據(jù)研究方向邀請進入相關微信群。請勿在群內(nèi)發(fā)送廣告,否則會請出群,謝謝理解~(也可以加入機器學習交流qq群772479961)
評論
圖片
表情
