<kbd id="afajh"><form id="afajh"></form></kbd>
<strong id="afajh"><dl id="afajh"></dl></strong>
    <del id="afajh"><form id="afajh"></form></del>
        1. <th id="afajh"><progress id="afajh"></progress></th>
          <b id="afajh"><abbr id="afajh"></abbr></b>
          <th id="afajh"><progress id="afajh"></progress></th>

          強(qiáng) 到 沒(méi) 朋 友!機(jī)器學(xué)習(xí)領(lǐng)域最全綜述列表!

          共 10134字,需瀏覽 21分鐘

           ·

          2020-10-09 14:33

          ↑↑↑點(diǎn)擊上方藍(lán)字,回復(fù)資料,10個(gè)G的驚喜

          作者:kaiyuan,來(lái)源:NewBeeNLP


          繼續(xù)來(lái)給大家分享github上的干貨,一個(gè)『機(jī)器學(xué)習(xí)領(lǐng)域綜述大列表』,涵蓋了自然語(yǔ)言處理、推薦系統(tǒng)、計(jì)算機(jī)視覺(jué)、深度學(xué)習(xí)、強(qiáng)化學(xué)習(xí)等主題。

          另外發(fā)現(xiàn)源repo中NLP相關(guān)的綜述不是很多,于是把一些覺(jué)得還不錯(cuò)的文章添加進(jìn)去了,重新整理更新在 AI-Surveys[1] 中。

          • ml-surveys: https://github.com/eugeneyan/ml-surveys
          • AI-Surveys: https://github.com/KaiyuanGao/AI-Surveys

          『收藏等于看完』系列,來(lái)看看都有哪些吧, enjoy!

          自然語(yǔ)言處理

          • 深度學(xué)習(xí):Recent Trends in Deep Learning Based Natural Language Processing[2]
          • 文本分類(lèi):Deep Learning Based Text Classification: A Comprehensive Review[3]
          • 文本生成:Survey of the SOTA in Natural Language Generation: Core tasks, applications and evaluation[4]
          • 文本生成:Neural Language Generation: Formulation, Methods, and Evaluation[5]
          • 遷移學(xué)習(xí):Exploring Transfer Learning with T5: the Text-To-Text Transfer Transformer[6] (Paper[7])
          • 遷移學(xué)習(xí):Neural Transfer Learning for Natural Language Processing[8]
          • 知識(shí)圖譜:A Survey on Knowledge Graphs: Representation, Acquisition and Applications[9]
          • 命名實(shí)體識(shí)別:A Survey on Deep Learning for Named Entity Recognition[10]
          • 關(guān)系抽取:More Data, More Relations, More Context and More Openness: A Review and Outlook for Relation Extraction[11]
          • 情感分析:Deep Learning for Sentiment Analysis : A Survey[12]
          • ABSA情感分析:Deep Learning for Aspect-Level Sentiment Classification: Survey, Vision, and Challenges[13]
          • 文本匹配:Neural Network Models for Paraphrase Identification, Semantic Textual Similarity, Natural Language Inference, and Question Answering[14]
          • 閱讀理解:Neural Reading Comprehension And Beyond[15]
          • 閱讀理解:Neural Machine Reading Comprehension: Methods and Trends[16]
          • 機(jī)器翻譯:Neural Machine Translation: A Review[17]
          • 機(jī)器翻譯:A Survey of Domain Adaptation for Neural Machine Translation[18]
          • 預(yù)訓(xùn)練模型:Pre-trained Models for Natural Language Processing: A Survey[19]
          • 注意力機(jī)制:An Attentive Survey of Attention Models[20]
          • 注意力機(jī)制:An Introductory Survey on Attention Mechanisms in NLP Problems[21]
          • 注意力機(jī)制:Attention in Natural Language Processing[22]
          • BERT:A Primer in BERTology: What we know about how BERT works[23]
          • Beyond Accuracy: Behavioral Testing of NLP Models with CheckList[24]
          • Evaluation of Text Generation: A Survey[25]

          推薦系統(tǒng)

          • Recommender systems survey[26]
          • Deep Learning based Recommender System: A Survey and New Perspectives[27]
          • Are We Really Making Progress? A Worrying Analysis of Neural Recommendation Approaches[28]
          • A Survey of Serendipity in Recommender Systems[29]
          • Diversity in Recommender Systems – A survey[30]
          • A Survey of Explanations in Recommender Systems[31]

          深度學(xué)習(xí)

          • A State-of-the-Art Survey on Deep Learning Theory and Architectures[32]
          • 知識(shí)蒸餾:Knowledge Distillation: A Survey[33]
          • 模型壓縮:Compression of Deep Learning Models for Text: A Survey[34]
          • 遷移學(xué)習(xí):A Survey on Deep Transfer Learning[35]
          • 神經(jīng)架構(gòu)搜索:A Comprehensive Survey of Neural Architecture Search-- Challenges and Solutions[36]
          • 神經(jīng)架構(gòu)搜索:Neural Architecture Search: A Survey[37]

          計(jì)算機(jī)視覺(jué)

          • 目標(biāo)檢測(cè):Object Detection in 20 Years[38]
          • 對(duì)抗性攻擊:Threat of Adversarial Attacks on Deep Learning in Computer Vision[39]
          • 自動(dòng)駕駛:Computer Vision for Autonomous Vehicles: Problems, Datasets and State of the Art[40]

          強(qiáng)化學(xué)習(xí)

          • A Brief Survey of Deep Reinforcement Learning[41]
          • Transfer Learning for Reinforcement Learning Domains[42]
          • Review of Deep Reinforcement Learning Methods and Applications in Economics[43]

          Embeddings

          • 圖:A Comprehensive Survey of Graph Embedding: Problems, Techniques and Applications[44]
          • 文本:From Word to Sense Embeddings:A Survey on Vector Representations of Meaning[45]
          • 文本:Diachronic Word Embeddings and Semantic Shifts[46]
          • 文本:Word Embeddings: A Survey[47]
          • A Survey on Contextual Embeddings[48]

          Meta-learning & Few-shot Learning

          • A Survey on Knowledge Graphs: Representation, Acquisition and Applications[49]
          • Meta-learning for Few-shot Natural Language Processing: A Survey[50]
          • Learning from Few Samples: A Survey[51]
          • Meta-Learning in Neural Networks: A Survey[52]
          • A Comprehensive Overview and Survey of Recent Advances in Meta-Learning[53]
          • Baby steps towards few-shot learning with multiple semantics[54]
          • Meta-Learning: A Survey[55]
          • A Perspective View And Survey Of Meta-learning[56]

          其他

          • A Survey on Transfer Learning[57]

          本文參考資料

          [1]

          AI-Surveys: https://github.com/KaiyuanGao/AI-Surveys

          [2]

          Recent Trends in Deep Learning Based Natural Language Processing: https://arxiv.org/pdf/1708.02709.pdf

          [3]

          Deep Learning Based Text Classification: A Comprehensive Review: https://arxiv.org/pdf/2004.03705

          [4]

          Survey of the SOTA in Natural Language Generation: Core tasks, applications and evaluation: https://www.jair.org/index.php/jair/article/view/11173/26378

          [5]

          Neural Language Generation: Formulation, Methods, and Evaluation: https://arxiv.org/pdf/2007.15780.pdf

          [6]

          Exploring Transfer Learning with T5: the Text-To-Text Transfer Transformer: https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html

          [7]

          Paper: https://arxiv.org/abs/1910.10683

          [8]

          Neural Transfer Learning for Natural Language Processing: https://aran.library.nuigalway.ie/handle/10379/15463

          [9]

          A Survey on Knowledge Graphs: Representation, Acquisition and Applications: https://arxiv.org/abs/2002.00388

          [10]

          A Survey on Deep Learning for Named Entity Recognition: https://arxiv.org/abs/1812.09449

          [11]

          More Data, More Relations, More Context and More Openness: A Review and Outlook for Relation Extraction: https://arxiv.org/abs/2004.03186

          [12]

          Deep Learning for Sentiment Analysis : A Survey: https://arxiv.org/abs/1801.07883

          [13]

          Deep Learning for Aspect-Level Sentiment Classification: Survey, Vision, and Challenges: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8726353

          [14]

          Neural Network Models for Paraphrase Identification, Semantic Textual Similarity, Natural Language Inference, and Question Answering: https://www.aclweb.org/anthology/C18-1328/

          [15]

          Neural Reading Comprehension And Beyond: https://stacks.stanford.edu/file/druid:gd576xb1833/thesis-augmented.pdf

          [16]

          Neural Machine Reading Comprehension: Methods and Trends: https://arxiv.org/abs/1907.01118

          [17]

          Neural Machine Translation: A Review: https://arxiv.org/abs/1912.02047

          [18]

          A Survey of Domain Adaptation for Neural Machine Translation: https://www.aclweb.org/anthology/C18-1111.pdf

          [19]

          Pre-trained Models for Natural Language Processing: A Survey: https://arxiv.org/abs/2003.08271

          [20]

          An Attentive Survey of Attention Models: https://arxiv.org/pdf/1904.02874.pdf

          [21]

          An Introductory Survey on Attention Mechanisms in NLP Problems: https://arxiv.org/abs/1811.05544

          [22]

          Attention in Natural Language Processing: https://arxiv.org/abs/1902.02181

          [23]

          A Primer in BERTology: What we know about how BERT works: https://arxiv.org/pdf/2002.12327.pdf

          [24]

          Beyond Accuracy: Behavioral Testing of NLP Models with CheckList: https://arxiv.org/pdf/2005.04118.pdf

          [25]

          Evaluation of Text Generation: A Survey: https://arxiv.org/pdf/2006.14799.pdf

          [26]

          Recommender systems survey: http://irntez.ir/wp-content/uploads/2016/12/sciencedirec.pdf

          [27]

          Deep Learning based Recommender System: A Survey and New Perspectives: https://arxiv.org/pdf/1707.07435.pdf

          [28]

          Are We Really Making Progress? A Worrying Analysis of Neural Recommendation Approaches: https://arxiv.org/pdf/1907.06902.pdf

          [29]

          A Survey of Serendipity in Recommender Systems: https://www.researchgate.net/publication/306075233_A_Survey_of_Serendipity_in_Recommender_Systems

          [30]

          Diversity in Recommender Systems – A survey: https://papers-gamma.link/static/memory/pdfs/153-Kunaver_Diversity_in_Recommender_Systems_2017.pdf

          [31]

          A Survey of Explanations in Recommender Systems: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.418.9237&rep=rep1&type=pdf

          [32]

          A State-of-the-Art Survey on Deep Learning Theory and Architectures: https://www.mdpi.com/2079-9292/8/3/292/htm

          [33]

          Knowledge Distillation: A Survey: https://arxiv.org/pdf/2006.05525.pdf

          [34]

          Compression of Deep Learning Models for Text: A Survey: https://arxiv.org/pdf/2008.05221.pdf

          [35]

          A Survey on Deep Transfer Learning: https://arxiv.org/pdf/1808.01974.pdf

          [36]

          A Comprehensive Survey of Neural Architecture Search-- Challenges and Solutions: https://arxiv.org/abs/2006.02903

          [37]

          Neural Architecture Search: A Survey: https://arxiv.org/abs/1808.05377

          [38]

          Object Detection in 20 Years: https://arxiv.org/pdf/1905.05055.pdf

          [39]

          Threat of Adversarial Attacks on Deep Learning in Computer Vision: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8294186

          [40]

          Computer Vision for Autonomous Vehicles: Problems, Datasets and State of the Art: https://arxiv.org/pdf/1704.05519.pdf

          [41]

          A Brief Survey of Deep Reinforcement Learning: https://arxiv.org/pdf/1708.05866.pdf

          [42]

          Transfer Learning for Reinforcement Learning Domains: http://www.jmlr.org/papers/volume10/taylor09a/taylor09a.pdf

          [43]

          Review of Deep Reinforcement Learning Methods and Applications in Economics: https://arxiv.org/pdf/2004.01509.pdf

          [44]

          A Comprehensive Survey of Graph Embedding: Problems, Techniques and Applications: https://arxiv.org/pdf/1709.07604

          [45]

          From Word to Sense Embeddings:A Survey on Vector Representations of Meaning: https://www.jair.org/index.php/jair/article/view/11259/26454

          [46]

          Diachronic Word Embeddings and Semantic Shifts: https://arxiv.org/pdf/1806.03537.pdf

          [47]

          Word Embeddings: A Survey: https://arxiv.org/abs/1901.09069

          [48]

          A Survey on Contextual Embeddings: https://arxiv.org/abs/2003.07278

          [49]

          A Survey on Knowledge Graphs: Representation, Acquisition and Applications: https://arxiv.org/abs/2002.00388

          [50]

          Meta-learning for Few-shot Natural Language Processing: A Survey: https://arxiv.org/abs/2007.09604

          [51]

          Learning from Few Samples: A Survey: https://arxiv.org/abs/2007.15484

          [52]

          Meta-Learning in Neural Networks: A Survey: https://arxiv.org/abs/2004.05439

          [53]

          A Comprehensive Overview and Survey of Recent Advances in Meta-Learning: https://arxiv.org/abs/2004.11149

          [54]

          Baby steps towards few-shot learning with multiple semantics: https://arxiv.org/abs/1906.01905

          [55]

          Meta-Learning: A Survey: https://arxiv.org/abs/1810.03548

          [56]

          A Perspective View And Survey Of Meta-learning: https://www.researchgate.net/publication/2375370_A_Perspective_View_And_Survey_Of_Meta-Learning

          [57]

          A Survey on Transfer Learning: http://202.120.39.19:40222/wp-content/uploads/2018/03/A-Survey-on-Transfer-Learning.pdf

          我的朋友圈更精彩


          推薦閱讀

          (點(diǎn)擊標(biāo)題可跳轉(zhuǎn)閱讀)

          七種回歸分析方法,個(gè) 個(gè) 經(jīng) 典

          機(jī) 器 學(xué) 習(xí) 算 法 沒(méi) 那 么 重 要

          統(tǒng)計(jì)學(xué)中常用的數(shù)據(jù)分析方法匯總!

          眾所周知,YouTube是個(gè)學(xué)習(xí)網(wǎng)站

          超全!我常用的70個(gè)數(shù)據(jù)分析網(wǎng)址

          老鐵,三連支持一下,好嗎?↓↓↓

          瀏覽 101
          點(diǎn)贊
          評(píng)論
          收藏
          分享

          手機(jī)掃一掃分享

          分享
          舉報(bào)
          評(píng)論
          圖片
          表情
          推薦
          點(diǎn)贊
          評(píng)論
          收藏
          分享

          手機(jī)掃一掃分享

          分享
          舉報(bào)
          <kbd id="afajh"><form id="afajh"></form></kbd>
          <strong id="afajh"><dl id="afajh"></dl></strong>
            <del id="afajh"><form id="afajh"></form></del>
                1. <th id="afajh"><progress id="afajh"></progress></th>
                  <b id="afajh"><abbr id="afajh"></abbr></b>
                  <th id="afajh"><progress id="afajh"></progress></th>
                  欧美日韩国产免费观看 | 一区二区三区四区精 | 青青草wwwwwwwww | 黄色视频在线看网站 | 免费 69视频 |