<kbd id="afajh"><form id="afajh"></form></kbd>
<strong id="afajh"><dl id="afajh"></dl></strong>
    <del id="afajh"><form id="afajh"></form></del>
        1. <th id="afajh"><progress id="afajh"></progress></th>
          <b id="afajh"><abbr id="afajh"></abbr></b>
          <th id="afajh"><progress id="afajh"></progress></th>

          讓你的單細(xì)胞數(shù)據(jù)動(dòng)起來(lái)!|iCellR(一)

          共 15381字,需瀏覽 31分鐘

           ·

          2021-03-13 22:34



          今天在翻閱single cellgithub時(shí)候,我看見(jiàn)了這個(gè)R包,允許我們處理各種來(lái)自單細(xì)胞測(cè)序技術(shù)的數(shù)據(jù),如scRNA-seq,scVDJ-seq和CITE-Seq

          單細(xì)胞轉(zhuǎn)錄組教程匯總

          想看整套的學(xué)習(xí)流程還可以戳這里:

          https://vimeo.com/337822487

          iCellR優(yōu)點(diǎn)

          Single(i)Cell R軟件包(iCellR)在分析pipeline的每個(gè)步驟提供前所未有的靈活性,包括標(biāo)準(zhǔn)化聚類降維插補(bǔ)可視化等。可以通過(guò)無(wú)監(jiān)督和有監(jiān)督聚類進(jìn)行分析, 此外,該工具包提供2D和3D交互式可視化(一個(gè)震撼的交互型3D可視化R包 - 可直接轉(zhuǎn)ggplot2圖為3D),差異表達(dá)分析基于細(xì)胞、基因和聚類的filter,數(shù)據(jù)合并,dropouts的標(biāo)準(zhǔn)化,數(shù)據(jù)插補(bǔ)方法,校正批次差異,找到標(biāo)記基因的工具聚類和條件,預(yù)測(cè)細(xì)胞類型和偽時(shí)序分析(NBT|45種單細(xì)胞軌跡推斷方法比較,110個(gè)實(shí)際數(shù)據(jù)集和229個(gè)合成數(shù)據(jù)集)。感覺(jué)能做的真的好多啊!

          安裝iCellR

          # 從鏡像中進(jìn)行安裝
          install.packages("iCellR")
          # 也可以從github中進(jìn)行安裝
          #library(devtools)
          #install_github("rezakj/iCellR")
          # or
          #git clone https://github.com/rezakj/iCellR.git
          #R
          #install.packages('iCellR/', repos = NULL, type="source")

          下載演示數(shù)據(jù)

          ion(samples = c("sample1","sample2","sample3"),

          # 設(shè)置需要下載的文件夾位置
          setwd("/your/download/directory")
          # 通過(guò)URL進(jìn)行數(shù)據(jù)下載
          sample.file.url = "https://s3-us-west-2.amazonaws.com/10x.files/samples/cell/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz"
          # 下載文件
          download.file(url = sample.file.url,
          destfile = "pbmc3k_filtered_gene_bc_matrices.tar.gz",
          method = "auto")
          # 解壓縮.
          untar("pbmc3k_filtered_gene_bc_matrices.tar.gz")

          更多的數(shù)據(jù)可以通過(guò)這里獲得:

          https://genome.med.nyu.edu/results/external/iCellR/


          如何使用iCellR分析scRNA-seq數(shù)據(jù)


          1. 加載iCellR包和下載的PBMC樣本數(shù)據(jù)。

          library("iCellR")
          my.data <- load10x("filtered_gene_bc_matrices/hg19/")
          #該目錄有barcodes.tsv,genes.tsv和matrix.mtx文件,將10x的數(shù)據(jù)讀入數(shù)據(jù)框
          # 如果是SMART-seq2中有名的小鼠全器官數(shù)據(jù),讀入方式如下
          # my.data = read.delim("FACS/Kidney-counts.csv", sep=",", header=TRUE)

          2. 匯總數(shù)據(jù)

          dim(my.data)
          # [1] 32738 2700
          # 將示例數(shù)據(jù)進(jìn)行拆分為3個(gè)samples
          sample1 <- my.data[1:900]
          sample2 <- my.data[901:1800]
          sample3 <- my.data[1801:2700]

          # 合并示例文件

          my.data <- data.aggregat condition.names = c("WT","KO","Ctrl"))
          # 查看數(shù)據(jù)
          head(my.data)[1:2]
          # WT_AAACATACAACCAC-1 WT_AAACATTGAGCTAC-1
          #A1BG 0 0
          #A1BG.AS1 0 0
          #A1CF 0 0
          #A2M 0 0
          #A2M.AS1 0 0

          3. 制作iCellR類的對(duì)象。

          my.obj <- make.obj(my.data)
          my.obj
          ###################################
          ,--. ,-----. ,--.,--.,------.
          `--'' .--./ ,---. | || || .--. '
          ,--.| | | .-. :| || || '--'.'
          | |' '--'\ --. | || || |
          `--' `-----' `----'`--'`--'`--' '--'
          ###################################
          An object of class iCellR version: 0.99.0
          Raw/original data dimentions (rows,columns): 32738,2700
          Data conditions in raw data: Ctrl,KO,WT (900,900,900)
          Row names: A1BG,A1BG.AS1,A1CF ...
          Columns names: WT_AAACATACAACCAC.1,WT_AAACATTGAGCTAC.1,WT_AAACATTGATCAGC.1 ...
          ###################################
          QC stats performed: FALSE , PCA performed: FALSE , CCA performed: FALSE
          Clustering performed: FALSE , Number of clusters: 0
          tSNE performed: FALSE , UMAP performed: FALSE , DiffMap performed: FALSE
          Main data dimentions (rows,columns): 0 0
          Normalization factors: ...
          Imputed data dimentions (rows,columns): 0 0
          ############## scVDJ-Seq ###########
          VDJ data dimentions (rows,columns): 0 0
          ############## CITE-Seq ############
          ADT raw data dimentions (rows,columns): 0 0
          ADT main data dimentions (rows,columns): 0 0
          ADT columns names: ...
          ADT row names: ...
          ######## iCellR object made ########

          4. 進(jìn)行質(zhì)控(QC)

          my.obj <- qc.stats(my.obj) # 計(jì)算每個(gè)細(xì)胞的UMI數(shù)和基因數(shù),還有細(xì)胞周期基因和線粒體基因('mito.percent')的百分比

          5. 細(xì)胞周期預(yù)測(cè)

          上一個(gè)推送的細(xì)胞周期預(yù)測(cè)方法還是較為一致的,都是通過(guò)評(píng)分進(jìn)行周期的預(yù)測(cè),

          my.obj <- cc(my.obj, s.genes = s.phase, g2m.genes = g2m.phase)
          head(my.obj@stats)
          # CellIds nGenes UMIs mito.percent
          #WT_AAACATACAACCAC.1 WT_AAACATACAACCAC.1 781 2421 0.030152829
          #WT_AAACATTGAGCTAC.1 WT_AAACATTGAGCTAC.1 1352 4903 0.037935958
          #WT_AAACATTGATCAGC.1 WT_AAACATTGATCAGC.1 1131 3149 0.008891712
          #WT_AAACCGTGCTTCCG.1 WT_AAACCGTGCTTCCG.1 960 2639 0.017430845
          #WT_AAACCGTGTATGCG.1 WT_AAACCGTGTATGCG.1 522 981 0.012232416
          #WT_AAACGCACTGGTAC.1 WT_AAACGCACTGGTAC.1 782 2164 0.016635860
          # S.phase.probability g2m.phase.probability S.Score
          #WT_AAACATACAACCAC.1 0.0012391574 0.0004130525 0.030569081
          #WT_AAACATTGAGCTAC.1 0.0002039568 0.0004079135 -0.077860621
          #WT_AAACATTGATCAGC.1 0.0003175611 0.0019053668 -0.028560560
          #WT_AAACCGTGCTTCCG.1 0.0007578628 0.0011367942 0.001917225
          #WT_AAACCGTGTATGCG.1 0.0000000000 0.0020387360 -0.020085210
          #WT_AAACGCACTGGTAC.1 0.0000000000 0.0000000000 -0.038953135
          # G2M.Score Phase
          #WT_AAACATACAACCAC.1 -0.0652390011 S
          #WT_AAACATTGAGCTAC.1 -0.1277015099 G1
          #WT_AAACATTGATCAGC.1 -0.0036505733 G1
          #WT_AAACCGTGCTTCCG.1 -0.0499511543 S
          #WT_AAACCGTGTATGCG.1 0.0009426363 G2M
          #WT_AAACGCACTGGTAC.1 -0.0680240629 G1

          # 繪制細(xì)胞周期圖
          pie(table(my.obj@stats$Phase))

          6. Plot QC

          默認(rèn)情況下的繪圖功能都將創(chuàng)建交互式html文件,可以設(shè)置interactive = FALSE來(lái)關(guān)閉。

          # 繪制 三個(gè)分組中UMIs, genes和 percent mito的beanplot分布圖,想單獨(dú)畫地話可以用`?stats.plot`help一下如何修改參數(shù)
          stats.plot(my.obj,
          plot.type = "all.in.one",
          out.name = "UMI-plot",
          interactive = FALSE,
          cell.color = "slategray3",
          cell.size = 1,
          cell.transparency = 0.5,
          box.color = "red",
          box.line.col = "green")


          # 繪制散點(diǎn)圖查看線粒體基因和基因分布,注意參數(shù)`plot.type`
          stats.plot(my.obj, plot.type = "point.mito.umi", out.name = "mito-umi-plot")###該圖為線粒體基因和UMI的相關(guān)表達(dá)分布(一般原則下會(huì)認(rèn)為線粒體基因比例較高可能為破碎衰老細(xì)胞,可以設(shè)置cutoff值去掉,但如果研究為高代謝或本身耗能較多的細(xì)胞時(shí)需要考慮)
          stats.plot(my.obj, plot.type = "point.gene.umi", out.name = "gene-umi-plot")###此圖為UMI和GENE的表達(dá)分布(原則上遵循線性分布)

          R語(yǔ)言 - 散點(diǎn)圖繪制


          7. 過(guò)濾細(xì)胞

          my.obj <- cell.filter(my.obj,
          min.mito = 0,
          max.mito = 0.05,
          min.genes = 200,
          max.genes = 2400,
          min.umis = 0,
          max.umis = Inf)

          #[1] "cells with min mito ratio of 0 and max mito ratio of 0.05 were filtered." 保留線粒體基因比例在0到0.05的細(xì)胞
          #[1] "cells with min genes of 200 and max genes of 2400 were filtered." 保留基因數(shù)在200到2400之間的細(xì)胞
          #[1] "No UMI number filter" 不通過(guò)UMI數(shù)和細(xì)胞ID來(lái)篩選
          #[1] "No cell filter by provided gene/genes"
          #[1] "No cell id filter"
          #[1] "filters_set.txt file has beed generated and includes the filters set for this experiment."篩選之后會(huì)生成一個(gè)文件filter_set,含有實(shí)驗(yàn)的篩選設(shè)置
          # more examples 也可以通過(guò)基因和細(xì)胞ID來(lái)篩選
          # my.obj <- cell.filter(my.obj, filter.by.gene = c("RPL13","RPL10")) # filter our cell having no counts for these genes
          # my.obj <- cell.filter(my.obj, filter.by.cell.id = c("WT_AAACATACAACCAC.1")) # filter our cell cell by their cell ids.

          # 查看剩下的細(xì)胞數(shù)(線粒體基因比例在0到0.05,基因數(shù)在200到2400之間)
          dim([email protected])
          #[1] 32738 2637
          # 過(guò)濾掉了63個(gè)細(xì)胞

          8. 進(jìn)行標(biāo)準(zhǔn)化

          可以根據(jù)自己的研究對(duì)數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化。還可以使用iCellR以外的工具對(duì)數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化,并將數(shù)據(jù)導(dǎo)入iCellR。對(duì)于大多數(shù)單細(xì)胞研究,建議使用“ranked.glsf”標(biāo)準(zhǔn)化。這種標(biāo)準(zhǔn)化化比較適合具有大量零的矩陣。且在合并數(shù)據(jù)(操作參考步驟2:匯總數(shù)據(jù))的情況下,也能對(duì)批次進(jìn)行校正。

          my.obj <- norm.data(my.obj,
          norm.method = "ranked.glsf",
          top.rank = 500) # best for scRNA-Seq
          # **更多的標(biāo)準(zhǔn)化方式**
          #my.obj <- norm.data(my.obj, norm.method = "ranked.deseq", top.rank = 500)
          #my.obj <- norm.data(my.obj, norm.method = "deseq") # best for bulk RNA-Seq
          #my.obj <- norm.data(my.obj, norm.method = "global.glsf") # best for bulk RNA-Seq
          #my.obj <- norm.data(my.obj, norm.method = "rpm", rpm.factor = 100000) # best for bulk RNA-Seq
          #my.obj <- norm.data(my.obj, norm.method = "spike.in", spike.in.factors = NULL)
          #my.obj <- norm.data(my.obj, norm.method = "no.norm") # if the data is already normalized

          9. 進(jìn)行二次QC

          my.obj <- qc.stats(my.obj,which.data = "main.data")
          ### 該次QC的主要目的就是計(jì)算UMI數(shù)量,每個(gè)細(xì)胞的基因以及每個(gè)細(xì)胞和細(xì)胞周期基因的線粒體基因的百分比。從圖中可以看出其細(xì)胞周期相關(guān)基因表達(dá)較低,線粒體基因表達(dá)比例也較低
          stats.plot(my.obj,
          plot.type = "all.in.one",
          out.name = "UMI-plot",
          interactive = F,
          cell.color = "slategray3",
          cell.size = 1,
          cell.transparency = 0.5,
          box.color = "red",
          box.line.col = "green",
          back.col = "white")

          R語(yǔ)言 - 箱線圖(小提琴圖、抖動(dòng)圖、區(qū)域散點(diǎn)圖)

          10. Scale data

          my.obj <- data.scale(my.obj)  # 對(duì)數(shù)據(jù)進(jìn)行中心化和標(biāo)準(zhǔn)化處理

          11.進(jìn)行g(shù)ene統(tǒng)計(jì)

          my.obj <- gene.stats(my.obj, which.data = "main.data")
          head([email protected][order([email protected]$numberOfCells, decreasing = T),]) # 將數(shù)據(jù)通過(guò)擁有該基因的細(xì)胞數(shù)按從大到小進(jìn)行排序
          # genes numberOfCells totalNumberOfCells percentOfCells meanExp
          #30303 TMSB4X 2637 2637 100.00000 38.55948
          #3633 B2M 2636 2637 99.96208 45.07327
          #14403 MALAT1 2636 2637 99.96208 70.95452
          #27191 RPL13A 2635 2637 99.92416 32.29009
          #27185 RPL10 2632 2637 99.81039 35.43002
          #27190 RPL13 2630 2637 99.73455 32.32106
          # SDs condition
          #30303 7.545968e-15 all
          #3633 2.893940e+01 all
          #14403 7.996407e+01 all
          #27191 2.783799e+01 all
          #27185 2.599067e+01 all
          #27190 2.661361e+01 all

          12.制作聚類的基因模型

          在bulk RNA-seq數(shù)據(jù)中,用平均表達(dá)值meanExp排名前500的基因(設(shè)置參數(shù)base.mean.rank對(duì)樣本進(jìn)行聚類是非常常見(jiàn)的,主要原因是為了降低噪聲。在scRNA-seq數(shù)據(jù)中也可以這樣做。并加上ranked.glsf歸一化,會(huì)較為擅長(zhǎng)處理具有大量零的矩陣。

          # 看一下高變基因集
          make.gene.model(my.obj, my.out.put = "plot",
          dispersion.limit = 1.5,
          base.mean.rank = 500,
          no.mito.model = T,
          mark.mito = T,
          interactive = F,
          no.cell.cycle = T,
          out.name = "gene.model")

          # 將高變基因集注入`my.obj` 中
          my.obj <- make.gene.model(my.obj, my.out.put = "data",
          dispersion.limit = 1.5,
          base.mean.rank = 500,
          no.mito.model = T,
          mark.mito = T,
          interactive = F,
          no.cell.cycle = T,
          out.name = "gene.model")
          head([email protected]) # 高變基因
          # "ACTB" "ACTG1" "ACTR3" "AES" "AIF1" "ALDOA"
          # get html plot (optional)
          #make.gene.model(my.obj, my.out.put = "plot",
          # dispersion.limit = 1.5,
          # base.mean.rank = 500,
          # no.mito.model = T,
          # mark.mito = T,
          # interactive = T,
          # out.name = "plot4_gene.model")

          13. 進(jìn)行降維


          降維是為了在信息損失較少的情況下,以比原始特征數(shù)量少得多的特征(基因)來(lái)表示數(shù)據(jù),更好地捕捉細(xì)胞之間的關(guān)系,常見(jiàn)降維的方法有PCA,t-SNE,umap和diffusion map。(Hemberg-lab單細(xì)胞轉(zhuǎn)錄組數(shù)據(jù)分析(十一)- Scater單細(xì)胞表達(dá)譜PCA可視化

          PCA分析

          my.obj <- run.pca(my.obj, method = "gene.model", gene.list = [email protected],data.type = "main",batch.norm = F)
          opt.pcs.plot(my.obj)
          ##下圖為典型的滾石圖,當(dāng)趨勢(shì)越趨于平緩表明其PC值作用越小,下圖PCA取到10。這一步是可選的,可能在一些情況下也是不適用的。# 2 round PCA (to find top genes in the first 10 PCs and re-run PCA for better clustering
          ## This is optional and might not be good in some cases
          length([email protected])
          # 585
          my.obj <- find.dim.genes(my.obj, dims = 1:10,top.pos = 20, top.neg = 20) # (optional)
          length([email protected])
          # 208
          # second round PC
          my.obj <- run.pca(my.obj, method = "gene.model", gene.list = [email protected],data.type = "main",batch.norm = F)
          [email protected]

          Hemberg-lab單細(xì)胞轉(zhuǎn)錄組數(shù)據(jù)分析(十一)- Scater單細(xì)胞表達(dá)譜PCA可視化

          更多降維方法

          # tSNE
          my.obj <- run.pc.tsne(my.obj, dims = 1:10)
          # UMAP
          my.obj <- run.umap(my.obj, dims = 1:10, method = "naive")
          # or
          # my.obj <- run.umap(my.obj, dims = 1:10, method = "umap-learn")
          # diffusion map
          # this requires python packge phate
          # pip install --user phate
          # Install phateR version 2.9
          # wget https://cran.r-project.org/src/contrib/Archive/phateR/phateR_0.2.9.tar.gz
          # install.packages('phateR/', repos = NULL, type="source")
          library(phateR)
          my.obj <- run.diffusion.map(my.obj, dims = 1:10, method = "phate")

          14. 對(duì)細(xì)胞進(jìn)行聚類分析


          聚類是針對(duì)給定的樣本,依據(jù)它們特征的相似度或距離,將其歸并到若干個(gè)“類”或“簇”的數(shù)據(jù)分析問(wèn)題。一個(gè)類是樣本的一個(gè)子集。直觀上,相似的樣本聚集在相同的類,不相似的樣本分散在不同的類。這里,樣本之間的相似度或距離起著重要作用。”
          降維是對(duì)feature (gene) 進(jìn)行操作,而聚類是對(duì)sample進(jìn)行操作,建議在得到高變基因以及降維后操作。(基因表達(dá)聚類分析之初探SOM)


          建議使用以下默認(rèn)選項(xiàng):

          my.obj <- run.clustering(my.obj,
          clust.method = "kmeans", # 聚類方式為k-means
          dist.method = "euclidean", # 距離計(jì)算是歐氏距離,有非常明確的空間距離概念
          index.method = "silhouette",
          max.clust = 25,
          min.clust = 2,
          dims = 1:10)

          # 如果要手動(dòng)設(shè)置cluster數(shù)量,而不使用預(yù)測(cè)的最佳數(shù)量,請(qǐng)將最小值和最大值設(shè)置為所需的數(shù)量:
          #my.obj <- run.clustering(my.obj,
          # clust.method = "ward.D",
          # dist.method = "euclidean",
          # index.method = "ccc",
          # max.clust = 8,
          # min.clust = 8,
          # dims = 1:10)
          # more examples
          #my.obj <- run.clustering(my.obj,
          # clust.method = "ward.D",
          # dist.method = "euclidean",
          # index.method = "kl",
          # max.clust = 25,
          # min.clust = 2,
          # dims = 1:10)

          15. 數(shù)據(jù)可視化

          # clusters
          A= cluster.plot(my.obj,plot.type = "pca",interactive = F)
          B= cluster.plot(my.obj,plot.type = "umap",interactive = F)
          C= cluster.plot(my.obj,plot.type = "tsne",interactive = F)
          D= cluster.plot(my.obj,plot.type = "diffusion",interactive = F)
          #下圖通過(guò)不同降維方式進(jìn)行展示,其實(shí)我們可以看出,在該組數(shù)據(jù)中還是t-sne降維后的可視化表達(dá)方式最好(細(xì)胞之間的分離度較好)
          library(gridExtra)
          grid.arrange(A,B,C,D)
          # conditions
          A= cluster.plot(my.obj,plot.type = "pca",col.by = "conditions",interactive = F)
          B= cluster.plot(my.obj,plot.type = "umap",col.by = "conditions",interactive = F)
          C= cluster.plot(my.obj,plot.type = "tsne",col.by = "conditions",interactive = F)
          D= cluster.plot(my.obj,plot.type = "diffusion",col.by = "conditions",interactive = F)
          #在下圖中我們可以發(fā)現(xiàn)無(wú)論哪種降維方式均沒(méi)有batch effect不同條件下的細(xì)胞重合度較好;library(gridExtra)
          grid.arrange(A,B,C,D)

          16. 三維圖,密度圖和交互式圖

          # 2D展示
          cluster.plot(my.obj,
          cell.size = 1,
          plot.type = "tsne",
          cell.color = "black",
          back.col = "white",
          col.by = "clusters",
          cell.transparency = 0.5,
          clust.dim = 2,
          interactive = F)

          # 可交互的2D圖
          cluster.plot(my.obj,
          plot.type = "tsne",
          col.by = "clusters",
          clust.dim = 2,
          interactive = T,
          out.name = "tSNE_2D_clusters")
          # 可交互的3D圖
          cluster.plot(my.obj,
          plot.type = "tsne",
          col.by = "clusters",
          clust.dim = 3,
          interactive = T,
          out.name = "tSNE_3D_clusters")
          # cluster的密度圖
          cluster.plot(my.obj,
          plot.type = "pca",
          col.by = "clusters",
          interactive = F,
          density=T)
          # Density plot for conditions
          cluster.plot(my.obj,
          plot.type = "pca",
          col.by = "conditions",
          interactive = F,
          density=T)
          #下圖為不同可視化方式,盡管方法多種多樣,但個(gè)人感覺(jué)還是2D的方式展示是最為合適的。


          17. 不同cluster和條件下細(xì)胞比例

          #如果normalize.ncell = TRUE,它將在三種狀態(tài)(conditions)隨機(jī)**降采樣(down sample)**,因此所有條件都具有相同數(shù)量的細(xì)胞,如果為FALSE則輸出原始細(xì)胞數(shù)。#下圖分別是在不同條件下細(xì)胞的比例關(guān)系,KO,WT,ctrl都是我們較為常見(jiàn)的細(xì)胞分組。# bar plot
          clust.cond.info(my.obj, plot.type = "bar", normalize.ncell = FALSE, my.out.put = "plot")
          # Pie chart
          clust.cond.info(my.obj, plot.type = "pie", normalize.ncell = FALSE, ,my.out.put = "plot")
          # data
          my.obj <- clust.cond.info(my.obj, plot.type = "bar", normalize.ncell = F)
          #head([email protected])
          # conditions clusters Freq
          #1 ctrl 1 199
          #2 KO 1 170
          #3 WT 1 182
          #4 ctrl 2 106
          #5 KO 2 116
          #6 WT 2 113


          到這里,我們其實(shí)已經(jīng)表現(xiàn)了許多的plot,下期接著介紹吧!


          單細(xì)胞

          高顏值免費(fèi)在線繪圖



          往期精品(點(diǎn)擊圖片直達(dá)文字對(duì)應(yīng)教程)

          機(jī)器學(xué)習(xí)

          后臺(tái)回復(fù)“生信寶典福利第一波”或點(diǎn)擊閱讀原文獲取教程合集


          瀏覽 38
          點(diǎn)贊
          評(píng)論
          收藏
          分享

          手機(jī)掃一掃分享

          分享
          舉報(bào)
          評(píng)論
          圖片
          表情
          推薦
          點(diǎn)贊
          評(píng)論
          收藏
          分享

          手機(jī)掃一掃分享

          分享
          舉報(bào)
          <kbd id="afajh"><form id="afajh"></form></kbd>
          <strong id="afajh"><dl id="afajh"></dl></strong>
            <del id="afajh"><form id="afajh"></form></del>
                1. <th id="afajh"><progress id="afajh"></progress></th>
                  <b id="afajh"><abbr id="afajh"></abbr></b>
                  <th id="afajh"><progress id="afajh"></progress></th>
                  人人射视频 | 黄色片网站在线免费观看 | 四虎影院日韩无码 | 俺来也操逼 | 人人爱,天天草 |