OpenCV深度神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)人體姿態(tài)評(píng)估
點(diǎn)擊上方“小白學(xué)視覺(jué)”,選擇加"星標(biāo)"或“置頂”
重磅干貨,第一時(shí)間送達(dá)
OpenCV自從發(fā)布了DNN模塊之后,就開始以開掛的方式支持各種深度學(xué)習(xí)預(yù)訓(xùn)練模型的調(diào)用,DNN模塊的全稱為深度神經(jīng)網(wǎng)絡(luò),但是并不是所有深度學(xué)習(xí)模型導(dǎo)出到OpenCV DNN模塊中都可以使用,只有那些OpenCV聲明支持的層與網(wǎng)絡(luò)模型才會(huì)被DNN模塊接受,當(dāng)期OpenCV支持的模型與層類型可以在下面鏈接中找到相關(guān)文檔
https://github.com/opencv/opencv/wiki/Deep-Learning-in-OpenCV
OpenCV3.4.x的版本開始支持在OpenCV DNN模塊中使用openopse的深度學(xué)習(xí)模型,實(shí)現(xiàn)人體單人姿態(tài)評(píng)估, 首先需要下載人體姿態(tài)評(píng)估的預(yù)訓(xùn)練模型。基于COCO數(shù)據(jù)集訓(xùn)練的模型下載地址如下:
http://posefs1.perception.cs.cmu.edu/OpenPose/models/pose/coco/pose_iter_440000.caffemodel
基于MPI數(shù)據(jù)集訓(xùn)練的模型下載地址如下:
http://posefs1.perception.cs.cmu.edu/OpenPose/models/pose/mpi/pose_iter_160000.caffemodel
下面只需要如下幾步就可以實(shí)現(xiàn)基于OpenCV的單人姿態(tài)評(píng)估:
1.定義COCO數(shù)據(jù)集支持的18點(diǎn)人體位置與關(guān)系位置
BODY_PARTS?=?{?"Nose":?0,?"Neck":?1,?"RShoulder":?2,?"RElbow":?3,?"RWrist":?4,
???????????????"LShoulder":?5,?"LElbow":?6,?"LWrist":?7,?"RHip":?8,?"RKnee":?9,
???????????????"RAnkle":?10,?"LHip":?11,?"LKnee":?12,?"LAnkle":?13,?"REye":?14,
???????????????"LEye":?15,?"REar":?16,?"LEar":?17,?"Background":?18?}
POSE_PAIRS?=?[?["Neck",?"RShoulder"],?["Neck",?"LShoulder"],?["RShoulder",?"RElbow"],
???????????????["RElbow",?"RWrist"],?["LShoulder",?"LElbow"],?["LElbow",?"LWrist"],
???????????????["Neck",?"RHip"],?["RHip",?"RKnee"],?["RKnee",?"RAnkle"],?["Neck",?"LHip"],
???????????????["LHip",?"LKnee"],?["LKnee",?"LAnkle"],?["Neck",?"Nose"],?["Nose",?"REye"],
???????????????["REye",?"REar"],?["Nose",?"LEye"],?["LEye",?"LEar"]?]
2.定義MPI數(shù)據(jù)集支持的15點(diǎn)人體位置與關(guān)系位置
BODY_PARTS?=?{?"Head":?0,?"Neck":?1,?"RShoulder":?2,?"RElbow":?3,?"RWrist":?4,
???????????????"LShoulder":?5,?"LElbow":?6,?"LWrist":?7,?"RHip":?8,?"RKnee":?9,
???????????????"RAnkle":?10,?"LHip":?11,?"LKnee":?12,?"LAnkle":?13,?"Chest":?14,
???????????????"Background":?15?}
POSE_PAIRS?=?[?["Head",?"Neck"],?["Neck",?"RShoulder"],?["RShoulder",?"RElbow"],
???????????????["RElbow",?"RWrist"],?["Neck",?"LShoulder"],?["LShoulder",?"LElbow"],
???????????????["LElbow",?"LWrist"],?["Neck",?"Chest"],?["Chest",?"RHip"],?["RHip",?"RKnee"],
???????????????["RKnee",?"RAnkle"],?["Chest",?"LHip"],?["LHip",?"LKnee"],?["LKnee",?"LAnkle"]?]
3.根據(jù)不同數(shù)據(jù)集調(diào)用DNN模塊加載指定的預(yù)訓(xùn)練模型
inWidth?=?368
inHeight?=?368
thr?=?0.1
protoc?=?"D:/projects/pose_body/mpi/pose_deploy_linevec_faster_4_stages.prototxt"
model?=?"D:/projects/pose_body/mpi/pose_iter_160000.caffemodel"
net?=?cv.dnn.readNetFromCaffe(protoc,?model)
4.調(diào)用OpenCV打開攝像頭
cap?=?cv.VideoCapture(0)
height?=?cap.get(cv.CAP_PROP_FRAME_HEIGHT)
width?=?cap.get(cv.CAP_PROP_FRAME_WIDTH)
5.使用前饋網(wǎng)絡(luò)模型預(yù)測(cè)
frameWidth?=?frame.shape[1]
frameHeight?=?frame.shape[0]
inp?=?cv.dnn.blobFromImage(frame,?1.0?/?255,?(inWidth,?inHeight),
??????????????????????????(0,?0,?0),?swapRB=False,?crop=False)
net.setInput(inp)
out?=?net.forward()
6.繪制檢測(cè)到人體姿態(tài)關(guān)鍵點(diǎn)位置
points?=?[]
for?i?in?range(len(BODY_PARTS)):
????#?Slice?heatmap?of?corresponging?body's?part.
????heatMap?=?out[0,?i,?:,?:]
????#?Originally,?we?try?to?find?all?the?local?maximums.?To?simplify?a?sample
????#?we?just?find?a?global?one.?However?only?a?single?pose?at?the?same?time
????#?could?be?detected?this?way.
????_,?conf,?_,?point?=?cv.minMaxLoc(heatMap)
????x?=?(frameWidth?*?point[0])?/?out.shape[3]
????y?=?(frameHeight?*?point[1])?/?out.shape[2]
????#?Add?a?point?if?it's?confidence?is?higher?than?threshold.
????points.append((x,?y)?if?conf?>?thr?else?None)
for?pair?in?POSE_PAIRS:
????partFrom?=?pair[0]
????partTo?=?pair[1]
????assert(partFrom?in?BODY_PARTS)
????assert(partTo?in?BODY_PARTS)
????idFrom?=?BODY_PARTS[partFrom]
????idTo?=?BODY_PARTS[partTo]
????if?points[idFrom]?and?points[idTo]:
????????x1,?y1?=?points[idFrom]
????????x2,?y2?=?points[idTo]
????????cv.line(frame,?(np.int32(x1),?np.int32(y1)),?(np.int32(x2),?np.int32(y2)),?(0,?255,?0),?3)
????????cv.ellipse(frame,?(np.int32(x1),?np.int32(y1)),?(3,?3),?0,?0,?360,?(0,?0,?255),?cv.FILLED)
????????cv.ellipse(frame,?(np.int32(x2),?np.int32(y2)),?(3,?3),?0,?0,?360,?(0,?0,?255),?cv.FILLED)
完整的代碼如下:
import?cv2?as?cv
import?numpy?as?np
dataset?=?'MPI'
if?dataset?==?'COCO':
????BODY_PARTS?=?{?"Nose":?0,?"Neck":?1,?"RShoulder":?2,?"RElbow":?3,?"RWrist":?4,
???????????????????"LShoulder":?5,?"LElbow":?6,?"LWrist":?7,?"RHip":?8,?"RKnee":?9,
???????????????????"RAnkle":?10,?"LHip":?11,?"LKnee":?12,?"LAnkle":?13,?"REye":?14,
???????????????????"LEye":?15,?"REar":?16,?"LEar":?17,?"Background":?18?}
????POSE_PAIRS?=?[?["Neck",?"RShoulder"],?["Neck",?"LShoulder"],?["RShoulder",?"RElbow"],
???????????????????["RElbow",?"RWrist"],?["LShoulder",?"LElbow"],?["LElbow",?"LWrist"],
???????????????????["Neck",?"RHip"],?["RHip",?"RKnee"],?["RKnee",?"RAnkle"],?["Neck",?"LHip"],
???????????????????["LHip",?"LKnee"],?["LKnee",?"LAnkle"],?["Neck",?"Nose"],?["Nose",?"REye"],
???????????????????["REye",?"REar"],?["Nose",?"LEye"],?["LEye",?"LEar"]?]
else:
????assert(dataset?==?'MPI')
????BODY_PARTS?=?{?"Head":?0,?"Neck":?1,?"RShoulder":?2,?"RElbow":?3,?"RWrist":?4,
???????????????????"LShoulder":?5,?"LElbow":?6,?"LWrist":?7,?"RHip":?8,?"RKnee":?9,
???????????????????"RAnkle":?10,?"LHip":?11,?"LKnee":?12,?"LAnkle":?13,?"Chest":?14,
???????????????????"Background":?15?}
????POSE_PAIRS?=?[?["Head",?"Neck"],?["Neck",?"RShoulder"],?["RShoulder",?"RElbow"],
???????????????????["RElbow",?"RWrist"],?["Neck",?"LShoulder"],?["LShoulder",?"LElbow"],
???????????????????["LElbow",?"LWrist"],?["Neck",?"Chest"],?["Chest",?"RHip"],?["RHip",?"RKnee"],
???????????????????["RKnee",?"RAnkle"],?["Chest",?"LHip"],?["LHip",?"LKnee"],?["LKnee",?"LAnkle"]?]
inWidth?=?368
inHeight?=?368
thr?=?0.1
protoc?=?"D:/projects/pose_body/mpi/pose_deploy_linevec_faster_4_stages.prototxt"
model?=?"D:/projects/pose_body/mpi/pose_iter_160000.caffemodel"
net?=?cv.dnn.readNetFromCaffe(protoc,?model)
cap?=?cv.VideoCapture(0)
height?=?cap.get(cv.CAP_PROP_FRAME_HEIGHT)
width?=?cap.get(cv.CAP_PROP_FRAME_WIDTH)
video_writer?=?cv.VideoWriter("D:/pose_estimation_demo.mp4",?cv.VideoWriter_fourcc('D',?'I',?'V',?'X'),?15,?(640,?480),?True)
while?cv.waitKey(1)?0:
????hasFrame,?frame?=?cap.read()
????if?not?hasFrame:
????????cv.waitKey()
????????break
????frameWidth?=?frame.shape[1]
????frameHeight?=?frame.shape[0]
????inp?=?cv.dnn.blobFromImage(frame,?1.0?/?255,?(inWidth,?inHeight),
??????????????????????????????(0,?0,?0),?swapRB=False,?crop=False)
????net.setInput(inp)
????out?=?net.forward()
????print(len(BODY_PARTS),?out.shape[0])
????#?assert(len(BODY_PARTS)?==?out.shape[1])
????points?=?[]
????for?i?in?range(len(BODY_PARTS)):
????????#?Slice?heatmap?of?corresponging?body's?part.
????????heatMap?=?out[0,?i,?:,?:]
????????#?Originally,?we?try?to?find?all?the?local?maximums.?To?simplify?a?sample
????????#?we?just?find?a?global?one.?However?only?a?single?pose?at?the?same?time
????????#?could?be?detected?this?way.
????????_,?conf,?_,?point?=?cv.minMaxLoc(heatMap)
????????x?=?(frameWidth?*?point[0])?/?out.shape[3]
????????y?=?(frameHeight?*?point[1])?/?out.shape[2]
????????#?Add?a?point?if?it's?confidence?is?higher?than?threshold.
????????points.append((x,?y)?if?conf?>?thr?else?None)
????for?pair?in?POSE_PAIRS:
????????partFrom?=?pair[0]
????????partTo?=?pair[1]
????????assert(partFrom?in?BODY_PARTS)
????????assert(partTo?in?BODY_PARTS)
????????idFrom?=?BODY_PARTS[partFrom]
????????idTo?=?BODY_PARTS[partTo]
????????if?points[idFrom]?and?points[idTo]:
????????????x1,?y1?=?points[idFrom]
????????????x2,?y2?=?points[idTo]
????????????cv.line(frame,?(np.int32(x1),?np.int32(y1)),?(np.int32(x2),?np.int32(y2)),?(0,?255,?0),?3)
????????????cv.ellipse(frame,?(np.int32(x1),?np.int32(y1)),?(3,?3),?0,?0,?360,?(0,?0,?255),?cv.FILLED)
????????????cv.ellipse(frame,?(np.int32(x2),?np.int32(y2)),?(3,?3),?0,?0,?360,?(0,?0,?255),?cv.FILLED)
????t,?_?=?net.getPerfProfile()
????freq?=?cv.getTickFrequency()?/?1000
????cv.putText(frame,?'%.2fms'?%?(t?/?freq),?(10,?20),?cv.FONT_HERSHEY_SIMPLEX,?0.5,?(0,?0,?0))
????#?video_writer.write(frame);
????#?cv.imwrite("D:/pose.png",?frame)
????cv.imshow('OpenPose?using?OpenCV',?frame)
運(yùn)行結(jié)果如下:
交流群
歡迎加入公眾號(hào)讀者群一起和同行交流,目前有SLAM、三維視覺(jué)、傳感器、自動(dòng)駕駛、計(jì)算攝影、檢測(cè)、分割、識(shí)別、醫(yī)學(xué)影像、GAN、算法競(jìng)賽等微信群(以后會(huì)逐漸細(xì)分),請(qǐng)掃描下面微信號(hào)加群,備注:”昵稱+學(xué)校/公司+研究方向“,例如:”張三?+?上海交大?+?視覺(jué)SLAM“。請(qǐng)按照格式備注,否則不予通過(guò)。添加成功后會(huì)根據(jù)研究方向邀請(qǐng)進(jìn)入相關(guān)微信群。請(qǐng)勿在群內(nèi)發(fā)送廣告,否則會(huì)請(qǐng)出群,謝謝理解~

