機(jī)器學(xué)習(xí) - 隨機(jī)森林手動(dòng)10 折交叉驗(yàn)證
隨機(jī)森林的 10 折交叉驗(yàn)證
再回到之前的隨機(jī)森林(希望還沒忘記,機(jī)器學(xué)習(xí)算法-隨機(jī)森林初探(1))
library(randomForest)
set.seed(304)
rf1000 <- randomForest(expr_mat, metadata[[group]], ntree=1000)
rf1000
##
## Call:
## randomForest(x = expr_mat, y = metadata[[group]], ntree = 1000)
## Type of random forest: classification
## Number of trees: 1000
## No. of variables tried at each split: 84
##
## OOB estimate of error rate: 11.69%
## Confusion matrix:
## DLBCL FL class.error
## DLBCL 57 1 0.01724138
## FL 8 11 0.42105263除了 OOB,我們還可以怎么評(píng)估模型的準(zhǔn)確性呢?這里沒有測試集,那么就拿原始數(shù)據(jù)做個(gè)評(píng)估吧(注意:這樣會(huì)低估預(yù)測錯(cuò)誤率):
# 查看模型的類,為randomForest
class(rf1000)
## [1] "randomForest"
# 查看 predict 函數(shù)的幫助,默認(rèn)幫助信息為通用函數(shù) predict 的
# ?predict
# 查看 randomForest 類的 predict 的幫助(predict+'.'+類名字)
# 像 print 此類函數(shù),也是如此查看幫助或源碼
# type 參數(shù): response 表示返回分類的值;prob 表示分類的概率;vote 表示 vote counts
# ?predict.randomForest開始預(yù)測
preds <- predict(rf1000, expr_mat, type="response")查看下preds對象,顯示的是每個(gè)樣品被預(yù)測為屬于什么類。
preds
## DLBCL_1 DLBCL_2 DLBCL_3 DLBCL_4 DLBCL_5 DLBCL_6 DLBCL_7 DLBCL_8 DLBCL_9 DLBCL_10 DLBCL_11
## DLBCL DLBCL DLBCL DLBCL DLBCL DLBCL DLBCL DLBCL DLBCL DLBCL DLBCL
## DLBCL_12 DLBCL_13 DLBCL_14 DLBCL_15 DLBCL_16 DLBCL_17 DLBCL_18 DLBCL_19 DLBCL_20 DLBCL_21 DLBCL_22
## DLBCL DLBCL DLBCL DLBCL DLBCL DLBCL DLBCL DLBCL DLBCL DLBCL DLBCL
## DLBCL_23 DLBCL_24 DLBCL_25 DLBCL_26 DLBCL_27 DLBCL_28 DLBCL_29 DLBCL_30 DLBCL_31 DLBCL_32 DLBCL_33
## DLBCL DLBCL DLBCL DLBCL DLBCL DLBCL DLBCL DLBCL DLBCL DLBCL DLBCL
## DLBCL_34 DLBCL_35 DLBCL_36 DLBCL_37 DLBCL_38 DLBCL_39 DLBCL_40 DLBCL_41 DLBCL_42 DLBCL_43 DLBCL_44
## DLBCL DLBCL DLBCL DLBCL DLBCL DLBCL DLBCL DLBCL DLBCL DLBCL DLBCL
## DLBCL_45 DLBCL_46 DLBCL_47 DLBCL_48 DLBCL_49 DLBCL_50 DLBCL_51 DLBCL_52 DLBCL_53 DLBCL_54 DLBCL_55
## DLBCL DLBCL DLBCL DLBCL DLBCL DLBCL DLBCL DLBCL DLBCL DLBCL DLBCL
## DLBCL_56 DLBCL_57 DLBCL_58 FL_1 FL_2 FL_3 FL_4 FL_5 FL_6 FL_7 FL_8
## DLBCL DLBCL DLBCL FL FL FL FL FL FL FL FL
## FL_9 FL_10 FL_11 FL_12 FL_13 FL_14 FL_15 FL_16 FL_17 FL_18 FL_19
## FL FL FL FL FL FL FL FL FL FL FL
## Levels: DLBCL FL計(jì)算模型效果評(píng)估矩陣(也稱混淆矩陣),敏感性、特異性
100%。完美的模型!!!(這里主要是看下predict如何使用,完美的模型只是說構(gòu)建的完美,不能表示預(yù)測性能的完美,因?yàn)闆]有用獨(dú)立數(shù)據(jù)集進(jìn)行評(píng)估。)
library(caret)
## Warning: package 'caret' was built under R version 4.0.3
## Loading required package: lattice
## Loading required package: ggplot2
##
## Attaching package: 'ggplot2'
## The following object is masked from 'package:randomForest':
##
## margin
caret::confusionMatrix(preds, metadata[[group]])
## Confusion Matrix and Statistics
##
## Reference
## Prediction DLBCL FL
## DLBCL 58 0
## FL 0 19
##
## Accuracy : 1
## 95% CI : (0.9532, 1)
## No Information Rate : 0.7532
## P-Value [Acc > NIR] : 3.343e-10
##
## Kappa : 1
##
## Mcnemar's Test P-Value : NA
##
## Sensitivity : 1.0000
## Specificity : 1.0000
## Pos Pred Value : 1.0000
## Neg Pred Value : 1.0000
## Prevalence : 0.7532
## Detection Rate : 0.7532
## Detection Prevalence : 0.7532
## Balanced Accuracy : 1.0000
##
## 'Positive' Class : DLBCL
##predict還可以返回分類的概率 (有了這個(gè)是不是就可以繪制 ROC 曲線和計(jì)算AUC 值了)。
preds_prob <- predict(rf1000, expr_mat, type="prob")
head(preds_prob)
## DLBCL FL
## DLBCL_1 0.951 0.049
## DLBCL_2 0.972 0.028
## DLBCL_3 0.975 0.025
## DLBCL_4 0.984 0.016
## DLBCL_5 0.963 0.037
## DLBCL_6 0.989 0.011predict還可以返回分類的vote值。
preds_prob <- predict(rf1000, expr_mat, type="vote")
head(preds_prob)
## DLBCL FL
## DLBCL_1 0.951 0.049
## DLBCL_2 0.972 0.028
## DLBCL_3 0.975 0.025
## DLBCL_4 0.984 0.016
## DLBCL_5 0.963 0.037
## DLBCL_6 0.989 0.011前面主要是學(xué)習(xí)下predict和confusionMatrix函數(shù)的使用。把前面的代碼串起來,就構(gòu)成了一個(gè)隨機(jī)森林的
10 折交叉驗(yàn)證代碼:
# https://stackoverflow.com/questions/47960427/how-to-calculate-the-oob-of-random-forest
K = 10
m = nrow(expr_mat)
set.seed(1)
kfold <- sample(rep(1:K, length.out=m), size=m, replace=F)
randomForestCV <- function(x, y, xtest, ytest, type="response", seed=1, ...){
set.seed(seed)
model <- randomForest(x, y, ...)
preds <- predict(model, xtest, type=type)
return(data.frame(preds, real=ytest))
}
CV_rf <- lapply(1:K, function(x, ...){
train_set = expr_mat[kfold != x,]
train_label = metadata[[group]][kfold!=x]
validate_set = expr_mat[kfold == x,]
validate_label = metadata[[group]][kfold==x]
randomForestCV(x=train_set, y=train_label, xtest=validate_set, ytest=validate_label, ...)
})
kfold_estimate <- do.call(rbind, CV_rf)查看下10 折交叉驗(yàn)證的預(yù)測結(jié)果
kfold_estimate
## preds real
## DLBCL_3 DLBCL DLBCL
## DLBCL_8 DLBCL DLBCL
## DLBCL_9 DLBCL DLBCL
## DLBCL_35 DLBCL DLBCL
## DLBCL_57 DLBCL DLBCL
## FL_9 DLBCL FL
## FL_10 DLBCL FL
## FL_18 FL FL
## DLBCL_15 DLBCL DLBCL
## DLBCL_16 DLBCL DLBCL
## DLBCL_40 DLBCL DLBCL
## DLBCL_41 DLBCL DLBCL
## DLBCL_42 DLBCL DLBCL
## DLBCL_44 DLBCL DLBCL
## DLBCL_51 DLBCL DLBCL
## DLBCL_53 DLBCL DLBCL
## DLBCL_5 DLBCL DLBCL
## DLBCL_20 DLBCL DLBCL
## DLBCL_25 DLBCL DLBCL
## DLBCL_32 DLBCL DLBCL
## DLBCL_38 DLBCL DLBCL
## FL_2 DLBCL FL
## FL_12 DLBCL FL
## FL_16 FL FL
## DLBCL_4 DLBCL DLBCL
## DLBCL_6 DLBCL DLBCL
## DLBCL_10 DLBCL DLBCL
## DLBCL_14 DLBCL DLBCL
## DLBCL_18 DLBCL DLBCL
## DLBCL_39 DLBCL DLBCL
## FL_1 DLBCL FL
## FL_6 FL FL
## DLBCL_17 DLBCL DLBCL
## DLBCL_19 DLBCL DLBCL
## DLBCL_22 DLBCL DLBCL
## DLBCL_33 DLBCL DLBCL
## DLBCL_36 DLBCL DLBCL
## DLBCL_45 DLBCL DLBCL
## DLBCL_47 DLBCL DLBCL
## FL_11 DLBCL FL
## DLBCL_13 DLBCL DLBCL
## DLBCL_23 DLBCL DLBCL
## DLBCL_37 DLBCL DLBCL
## DLBCL_52 DLBCL DLBCL
## FL_3 FL FL
## FL_5 FL FL
## FL_17 DLBCL FL
## FL_19 FL FL
## DLBCL_11 DLBCL DLBCL
## DLBCL_12 DLBCL DLBCL
## DLBCL_27 DLBCL DLBCL
## DLBCL_28 DLBCL DLBCL
## DLBCL_54 DLBCL DLBCL
## DLBCL_56 DLBCL DLBCL
## DLBCL_58 DLBCL DLBCL
## FL_14 DLBCL FL
## DLBCL_1 DLBCL DLBCL
## DLBCL_26 FL DLBCL
## DLBCL_29 FL DLBCL
## DLBCL_43 DLBCL DLBCL
## DLBCL_50 DLBCL DLBCL
## FL_8 DLBCL FL
## FL_15 FL FL
## DLBCL_2 DLBCL DLBCL
## DLBCL_7 DLBCL DLBCL
## DLBCL_48 DLBCL DLBCL
## DLBCL_55 DLBCL DLBCL
## FL_4 FL FL
## FL_7 FL FL
## FL_13 FL FL
## DLBCL_21 DLBCL DLBCL
## DLBCL_24 DLBCL DLBCL
## DLBCL_30 DLBCL DLBCL
## DLBCL_31 DLBCL DLBCL
## DLBCL_34 DLBCL DLBCL
## DLBCL_46 DLBCL DLBCL
## DLBCL_49 DLBCL DLBCL計(jì)算模型效果評(píng)估矩陣(也稱混淆矩陣)。準(zhǔn)確性值為0.8581,OOB
的錯(cuò)誤率是88.31%,相差不大。但Kappa值不算高0.5614,這也是數(shù)據(jù)集中兩個(gè)分組的樣本數(shù)目不均衡導(dǎo)致的。
library(caret)
caret::confusionMatrix(kfold_estimate$preds, kfold_estimate$real)
## Confusion Matrix and Statistics
##
## Reference
## Prediction DLBCL FL
## DLBCL 56 9
## FL 2 10
##
## Accuracy : 0.8571
## 95% CI : (0.7587, 0.9265)
## No Information Rate : 0.7532
## P-Value [Acc > NIR] : 0.01936
##
## Kappa : 0.5614
##
## Mcnemar's Test P-Value : 0.07044
##
## Sensitivity : 0.9655
## Specificity : 0.5263
## Pos Pred Value : 0.8615
## Neg Pred Value : 0.8333
## Prevalence : 0.7532
## Detection Rate : 0.7273
## Detection Prevalence : 0.8442
## Balanced Accuracy : 0.7459
##
## 'Positive' Class : DLBCL
##
# 結(jié)果如下其它指標(biāo)前面大都有講述或?confusionMatrix可看到對應(yīng)的計(jì)算公式。
重點(diǎn)看下Kappa系數(shù),其也是評(píng)估分類準(zhǔn)確性的一個(gè)指標(biāo)。在模型評(píng)估指標(biāo)一文有提到,準(zhǔn)確性值在各個(gè)分類樣本不平衡時(shí)會(huì)更多偏向樣品多的類。而Kappa系數(shù)則可以綜合評(píng)估這種不平衡性。Kappa系數(shù)在-1和1之間,值越大表示模型性能越好。
Kappa=0說明模型和瞎猜差不多。Kappa>0.4說明模型還行。Kappa>0.4說明模型挺好的。這幾個(gè)標(biāo)準(zhǔn)未找到確切文獻(xiàn),僅供參考來理解 Kappa 系數(shù)。
其計(jì)算公式如下:

往期精品(點(diǎn)擊圖片直達(dá)文字對應(yīng)教程)
后臺(tái)回復(fù)“生信寶典福利第一波”或點(diǎn)擊閱讀原文獲取教程合集

?
(請備注姓名-學(xué)校/企業(yè)-職務(wù)等)



























