<kbd id="afajh"><form id="afajh"></form></kbd>
<strong id="afajh"><dl id="afajh"></dl></strong>
    <del id="afajh"><form id="afajh"></form></del>
        1. <th id="afajh"><progress id="afajh"></progress></th>
          <b id="afajh"><abbr id="afajh"></abbr></b>
          <th id="afajh"><progress id="afajh"></progress></th>

          比監(jiān)督學(xué)習(xí)做的更好:半監(jiān)督學(xué)習(xí)

          共 3495字,需瀏覽 7分鐘

           ·

          2021-09-14 15:32









          點(diǎn)擊上方小白學(xué)視覺(jué)”,選擇加"星標(biāo)"或“置頂

          重磅干貨,第一時(shí)間送達(dá)

          本文轉(zhuǎn)自|機(jī)器學(xué)習(xí)算法那些事
          導(dǎo)讀

          為什么半監(jiān)督學(xué)習(xí)是機(jī)器學(xué)習(xí)的未來(lái)。


          監(jiān)督學(xué)習(xí)是人工智能領(lǐng)域的第一種學(xué)習(xí)類(lèi)型。從它的概念開(kāi)始,無(wú)數(shù)的算法,從簡(jiǎn)單的邏輯回歸到大規(guī)模的神經(jīng)網(wǎng)絡(luò),都已經(jīng)被研究用來(lái)提高精確度和預(yù)測(cè)能力。

          然而,一個(gè)重大突破揭示了添加“無(wú)監(jiān)督數(shù)據(jù)”可以提高模型泛化和性能。事實(shí)上,在非常多的場(chǎng)景中,帶有標(biāo)簽的數(shù)據(jù)并不容易獲得。半監(jiān)督學(xué)習(xí)可以在標(biāo)準(zhǔn)的任務(wù)中實(shí)現(xiàn)SOTA的效果,只需要一小部分的有標(biāo)記數(shù)據(jù) —— 數(shù)百個(gè)訓(xùn)練樣本。

          在這個(gè)我們對(duì)半監(jiān)督學(xué)習(xí)的探索中,我們會(huì)有:

          1. 半監(jiān)督學(xué)習(xí)簡(jiǎn)介。什么是半監(jiān)督學(xué)習(xí),它與其他學(xué)習(xí)方法相比如何,半監(jiān)督學(xué)習(xí)算法的框架/思維過(guò)程是什么?
          2. 算法:Semi-Supervised GANs。與傳統(tǒng)GANs的比較,過(guò)程的解釋?zhuān)氡O(jiān)督GANs的性能。
          3. 用例和機(jī)器學(xué)習(xí)的未來(lái)。為什么半監(jiān)督學(xué)習(xí)會(huì)有如此大的需求,哪里可以應(yīng)用。


          半監(jiān)督學(xué)習(xí)介紹


          半監(jiān)督學(xué)習(xí)算法代表了監(jiān)督和非監(jiān)督算法的中間地帶。雖然沒(méi)有正式定義為機(jī)器學(xué)習(xí)的“第四個(gè)”元素(監(jiān)督、無(wú)監(jiān)督、強(qiáng)化),但它將前兩個(gè)方面結(jié)合成一種自己的方法。

          這些算法操作的數(shù)據(jù)有一些標(biāo)簽,但大部分是沒(méi)有標(biāo)簽的。傳統(tǒng)上,人們要么選擇有監(jiān)督學(xué)習(xí)的方式,只對(duì)帶有標(biāo)簽的數(shù)據(jù)進(jìn)行操作,這將極大地減小數(shù)據(jù)集的規(guī)模,要么,就會(huì)選擇無(wú)監(jiān)督學(xué)習(xí)的方式,丟棄標(biāo)簽保留數(shù)據(jù)集的其余部分,然后做比如聚類(lèi)之類(lèi)的工作。


          這在現(xiàn)實(shí)世界中是很常見(jiàn)的。由于標(biāo)注是很昂貴的,特別是大規(guī)模數(shù)據(jù)集,特別是企業(yè)用途的,可能只有幾個(gè)標(biāo)簽。例如,考慮確定用戶(hù)活動(dòng)是否具有欺詐性。在100萬(wàn)用戶(hù)中,該公司知道有1萬(wàn)用戶(hù)是這樣的,但其他9萬(wàn)用戶(hù)可能是惡意的,也可能是良性的。半監(jiān)督學(xué)習(xí)允許我們操作這些類(lèi)型的數(shù)據(jù)集,而不必在選擇監(jiān)督學(xué)習(xí)或非監(jiān)督學(xué)習(xí)時(shí)做出權(quán)衡。

          一般來(lái)說(shuō),半監(jiān)督學(xué)習(xí)算法在這個(gè)框架上運(yùn)行:

          1. 半監(jiān)督機(jī)器學(xué)習(xí)算法使用有限的標(biāo)記樣本數(shù)據(jù)集來(lái)訓(xùn)練自己,從而形成一個(gè)“部分訓(xùn)練”的模型。
          2. 部分訓(xùn)練的模型對(duì)未標(biāo)記的數(shù)據(jù)進(jìn)行標(biāo)記。由于樣本標(biāo)記數(shù)據(jù)集有許多嚴(yán)重的限制(例如,在現(xiàn)實(shí)數(shù)據(jù)中的選擇偏差),標(biāo)記的結(jié)果被認(rèn)為是“偽標(biāo)簽”數(shù)據(jù)。
          3. 結(jié)合標(biāo)記和偽標(biāo)簽數(shù)據(jù)集,創(chuàng)建一個(gè)獨(dú)特的算法,結(jié)合描述和預(yù)測(cè)方面的監(jiān)督和非監(jiān)督學(xué)習(xí)。

          半監(jiān)督學(xué)習(xí)利用分類(lèi)過(guò)程來(lái)識(shí)別數(shù)據(jù)資產(chǎn),利用聚類(lèi)過(guò)程將其分成不同的部分。


          算法:Semi-Supervised GAN


          半監(jiān)督的GAN,簡(jiǎn)稱(chēng)為SGAN,是[生成對(duì)抗網(wǎng)絡(luò)](https://medium.com/analytics-vidhya/gans-for-one -an-直覺(jué)解釋-革命概念-2f962c858b95)架構(gòu)的一個(gè)變體,用于解決半監(jiān)督學(xué)習(xí)問(wèn)題。

          在傳統(tǒng)的GAN中,判別器被訓(xùn)練來(lái)預(yù)測(cè)由生成器模型生成的圖像是真實(shí)的還是假的,允許它從圖像中學(xué)習(xí)判別特征,即使沒(méi)有標(biāo)簽。盡管大多數(shù)人通常在GANs中使用訓(xùn)練很好的生成器,可以生成和數(shù)據(jù)集中相似的圖像,判別器還是可以通過(guò)以轉(zhuǎn)移學(xué)習(xí)作為起點(diǎn)在相同的數(shù)據(jù)集上建立分類(lèi)器,允許監(jiān)督任務(wù)從無(wú)監(jiān)督訓(xùn)練中受益。由于大部分的圖像特征已經(jīng)被學(xué)習(xí),因此進(jìn)行分類(lèi)的訓(xùn)練時(shí)間和準(zhǔn)確率會(huì)更好。

          然而,在SGAN中,判別器同時(shí)接受兩種模式的訓(xùn)練:無(wú)監(jiān)督和監(jiān)督。

          • 在無(wú)監(jiān)督模式中,需要區(qū)分真實(shí)圖像和生成的圖像,就像在傳統(tǒng)的GAN中一樣。
          • 在監(jiān)督模式中,需要將一幅圖像分類(lèi)為幾個(gè)類(lèi),就像在標(biāo)準(zhǔn)的神經(jīng)網(wǎng)絡(luò)分類(lèi)器中一樣。

          為了同時(shí)訓(xùn)練這兩種模式,判別器必須輸出1 + n個(gè)節(jié)點(diǎn)的值,其中1表示“真或假”節(jié)點(diǎn),n是預(yù)測(cè)任務(wù)中的類(lèi)數(shù)。

          在半監(jiān)督GAN中,對(duì)判別器模型進(jìn)行更新,預(yù)測(cè)K+1個(gè)類(lèi),其中K為預(yù)測(cè)問(wèn)題中的類(lèi)數(shù),并為一個(gè)新的“”類(lèi)添加額外的類(lèi)標(biāo)簽。它涉及到同時(shí)訓(xùn)練無(wú)監(jiān)督分類(lèi)任務(wù)和有監(jiān)督分類(lèi)任務(wù)的判別器模型。整個(gè)數(shù)據(jù)集都可以通過(guò)SGAN進(jìn)行傳遞 —— 當(dāng)一個(gè)訓(xùn)練樣本有標(biāo)簽時(shí),判別器的權(quán)值將被調(diào)整,否則,分類(lèi)任務(wù)將被忽略,判別器將調(diào)整權(quán)值以更好地區(qū)分真實(shí)的圖像和生成的圖像。

          雖然允許SGAN進(jìn)行無(wú)監(jiān)督訓(xùn)練,允許模型從一個(gè)非常大的未標(biāo)記數(shù)據(jù)集中學(xué)習(xí)非常有用的特征提取,但有監(jiān)督學(xué)習(xí)允許模型利用提取的特征并將其用于分類(lèi)任務(wù)。其結(jié)果是一個(gè)分類(lèi)器可以在像MNIST這樣的標(biāo)準(zhǔn)問(wèn)題上取得令人難以置信的結(jié)果,即使是在非常非常少的標(biāo)記樣本(數(shù)十到數(shù)百個(gè))上進(jìn)行訓(xùn)練。

          SGAN巧妙地結(jié)合了無(wú)監(jiān)督和監(jiān)督學(xué)習(xí)的方面,強(qiáng)強(qiáng)聯(lián)合,以最小的標(biāo)簽量,產(chǎn)生難以置信的結(jié)果。


          用例和機(jī)器學(xué)習(xí)的未來(lái)

          在一個(gè)可用數(shù)據(jù)量呈指數(shù)級(jí)增長(zhǎng)的時(shí)代,無(wú)監(jiān)督數(shù)據(jù)根本不能停下來(lái)等待標(biāo)注。無(wú)數(shù)真實(shí)世界的數(shù)據(jù)場(chǎng)景會(huì)像這樣出現(xiàn) —— 例如,YouTube視頻或網(wǎng)站內(nèi)容。從爬蟲(chóng)引擎和內(nèi)容聚合系統(tǒng)到圖像和語(yǔ)音識(shí)別,半監(jiān)督學(xué)習(xí)被廣泛應(yīng)用。

          半監(jiān)督學(xué)習(xí)將監(jiān)督學(xué)習(xí)和非監(jiān)督學(xué)習(xí)的過(guò)擬合和“不擬合”傾向(分別)結(jié)合起來(lái)的能力,創(chuàng)建了一個(gè)模型,在給出最小數(shù)量的標(biāo)記數(shù)據(jù)和大量的未標(biāo)記數(shù)據(jù)的情況下,可以出色地執(zhí)行分類(lèi)任務(wù)。除了分類(lèi)任務(wù),半監(jiān)督算法還有許多其他用途,如增強(qiáng)聚類(lèi)和異常檢測(cè)。盡管這一領(lǐng)域本身相對(duì)較新,但由于在當(dāng)今的數(shù)字領(lǐng)域中發(fā)現(xiàn)了巨大的需求,算法一直在不斷地被創(chuàng)造和完善。

          半監(jiān)督學(xué)習(xí)確實(shí)是機(jī)器學(xué)習(xí)的未來(lái)。

          好消息,小白學(xué)視覺(jué)團(tuán)隊(duì)的知識(shí)星球開(kāi)通啦,為了感謝大家的支持與厚愛(ài),團(tuán)隊(duì)決定將價(jià)值149元的知識(shí)星球現(xiàn)時(shí)免費(fèi)加入。各位小伙伴們要抓住機(jī)會(huì)哦!


          下載1:OpenCV-Contrib擴(kuò)展模塊中文版教程
          在「小白學(xué)視覺(jué)」公眾號(hào)后臺(tái)回復(fù):擴(kuò)展模塊中文教程即可下載全網(wǎng)第一份OpenCV擴(kuò)展模塊教程中文版,涵蓋擴(kuò)展模塊安裝、SFM算法、立體視覺(jué)、目標(biāo)跟蹤、生物視覺(jué)、超分辨率處理等二十多章內(nèi)容。

          下載2:Python視覺(jué)實(shí)戰(zhàn)項(xiàng)目52講
          小白學(xué)視覺(jué)公眾號(hào)后臺(tái)回復(fù):Python視覺(jué)實(shí)戰(zhàn)項(xiàng)目即可下載包括圖像分割、口罩檢測(cè)、車(chē)道線檢測(cè)、車(chē)輛計(jì)數(shù)、添加眼線、車(chē)牌識(shí)別、字符識(shí)別、情緒檢測(cè)、文本內(nèi)容提取、面部識(shí)別等31個(gè)視覺(jué)實(shí)戰(zhàn)項(xiàng)目,助力快速學(xué)校計(jì)算機(jī)視覺(jué)。

          下載3:OpenCV實(shí)戰(zhàn)項(xiàng)目20講
          小白學(xué)視覺(jué)公眾號(hào)后臺(tái)回復(fù):OpenCV實(shí)戰(zhàn)項(xiàng)目20講即可下載含有20個(gè)基于OpenCV實(shí)現(xiàn)20個(gè)實(shí)戰(zhàn)項(xiàng)目,實(shí)現(xiàn)OpenCV學(xué)習(xí)進(jìn)階。

          交流群


          歡迎加入公眾號(hào)讀者群一起和同行交流,目前有SLAM、三維視覺(jué)、傳感器自動(dòng)駕駛、計(jì)算攝影、檢測(cè)、分割、識(shí)別、醫(yī)學(xué)影像、GAN算法競(jìng)賽等微信群(以后會(huì)逐漸細(xì)分),請(qǐng)掃描下面微信號(hào)加群,備注:”昵稱(chēng)+學(xué)校/公司+研究方向“,例如:”張三 + 上海交大 + 視覺(jué)SLAM“。請(qǐng)按照格式備注,否則不予通過(guò)。添加成功后會(huì)根據(jù)研究方向邀請(qǐng)進(jìn)入相關(guān)微信群。請(qǐng)勿在群內(nèi)發(fā)送廣告,否則會(huì)請(qǐng)出群,謝謝理解~




          一、

          二、

          三、

          好消息,小白學(xué)視覺(jué)團(tuán)隊(duì)的知識(shí)星球開(kāi)通啦,為了感謝大家的支持與厚愛(ài),團(tuán)隊(duì)決定將價(jià)值149元的知識(shí)星球現(xiàn)時(shí)免費(fèi)加入。各位小伙伴們要抓住機(jī)會(huì)哦!


          下載1:OpenCV-Contrib擴(kuò)展模塊中文版教程
          在「小白學(xué)視覺(jué)」公眾號(hào)后臺(tái)回復(fù):擴(kuò)展模塊中文教程即可下載全網(wǎng)第一份OpenCV擴(kuò)展模塊教程中文版,涵蓋擴(kuò)展模塊安裝、SFM算法、立體視覺(jué)、目標(biāo)跟蹤、生物視覺(jué)、超分辨率處理等二十多章內(nèi)容。

          下載2:Python視覺(jué)實(shí)戰(zhàn)項(xiàng)目52講
          小白學(xué)視覺(jué)公眾號(hào)后臺(tái)回復(fù):Python視覺(jué)實(shí)戰(zhàn)項(xiàng)目即可下載包括圖像分割、口罩檢測(cè)、車(chē)道線檢測(cè)、車(chē)輛計(jì)數(shù)、添加眼線、車(chē)牌識(shí)別、字符識(shí)別、情緒檢測(cè)、文本內(nèi)容提取、面部識(shí)別等31個(gè)視覺(jué)實(shí)戰(zhàn)項(xiàng)目,助力快速學(xué)校計(jì)算機(jī)視覺(jué)。

          下載3:OpenCV實(shí)戰(zhàn)項(xiàng)目20講
          小白學(xué)視覺(jué)公眾號(hào)后臺(tái)回復(fù):OpenCV實(shí)戰(zhàn)項(xiàng)目20講即可下載含有20個(gè)基于OpenCV實(shí)現(xiàn)20個(gè)實(shí)戰(zhàn)項(xiàng)目,實(shí)現(xiàn)OpenCV學(xué)習(xí)進(jìn)階。

          交流群


          歡迎加入公眾號(hào)讀者群一起和同行交流,目前有SLAM、三維視覺(jué)、傳感器自動(dòng)駕駛、計(jì)算攝影、檢測(cè)、分割、識(shí)別、醫(yī)學(xué)影像、GAN算法競(jìng)賽等微信群(以后會(huì)逐漸細(xì)分),請(qǐng)掃描下面微信號(hào)加群,備注:”昵稱(chēng)+學(xué)校/公司+研究方向“,例如:”張三 + 上海交大 + 視覺(jué)SLAM“。請(qǐng)按照格式備注,否則不予通過(guò)。添加成功后會(huì)根據(jù)研究方向邀請(qǐng)進(jìn)入相關(guān)微信群。請(qǐng)勿在群內(nèi)發(fā)送廣告,否則會(huì)請(qǐng)出群,謝謝理解~


          瀏覽 46
          點(diǎn)贊
          評(píng)論
          收藏
          分享

          手機(jī)掃一掃分享

          分享
          舉報(bào)
          評(píng)論
          圖片
          表情
          推薦
          點(diǎn)贊
          評(píng)論
          收藏
          分享

          手機(jī)掃一掃分享

          分享
          舉報(bào)
          <kbd id="afajh"><form id="afajh"></form></kbd>
          <strong id="afajh"><dl id="afajh"></dl></strong>
            <del id="afajh"><form id="afajh"></form></del>
                1. <th id="afajh"><progress id="afajh"></progress></th>
                  <b id="afajh"><abbr id="afajh"></abbr></b>
                  <th id="afajh"><progress id="afajh"></progress></th>
                  天天色天天日 | 久久国产精品久久 | 99精品视频在线免费观看 | 亚洲无 码A片在线 | 日韩最新在线三级片 |